IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002578.html
   My bibliography  Save this article

Electricity industry (de)regulation and innovation in negative-emission technologies: How do market liberalization influences climate change mitigation?

Author

Listed:
  • Agyeman, Stephen Duah
  • Lin, Boqiang

Abstract

Deregulation is widely considered a driver of competition and reduction of market inefficiency and can lead to innovation. We deepen the literature and policy understanding of this narrative by extending it to negative emission technologies while we strengthen the findings of previous studies by accounting for input research and development (R&D) expenditure with heterogeneity analyses. The authors adopt the staggered difference-in-difference (SDID) design to 25 OECD countries for the period 1985–2015 to examine the influence of deregulation on innovation in the electricity industry with an emphasis on negative emission technologies. The empirical results show that while electricity deregulation is generally associated with increased innovation, only intense market deregulation can promote innovation in carbon capture and storage (CCS). This benefit is more observed in European Union OECD countries and those with high output innovation performance. The results also show that when implemented after market deregulation, solar PV and Wind power Feed-in tariffs effectively promote renewable energy innovation. The results suggest that electricity deregulation is a compelling market tool to promote climate change mitigation since the competitive market it creates supports the advancement of CCS and renewable energy innovation. We recommend a deregulation process to accommodate an effective market model designed to incentivize the promotion of funding for negative emission technologies.

Suggested Citation

  • Agyeman, Stephen Duah & Lin, Boqiang, 2023. "Electricity industry (de)regulation and innovation in negative-emission technologies: How do market liberalization influences climate change mitigation?," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002578
    DOI: 10.1016/j.energy.2023.126863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamasb, Tooraj & Pollitt, Michael G., 2011. "Electricity sector liberalisation and innovation: An analysis of the UK's patenting activities," Research Policy, Elsevier, vol. 40(2), pages 309-324, March.
    2. Gould, David M. & Gruben, William C., 1996. "The role of intellectual property rights in economic growth," Journal of Development Economics, Elsevier, vol. 48(2), pages 323-350, March.
    3. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    4. Simon Freyaldenhoven & Christian Hansen & Jesse M. Shapiro, 2019. "Pre-event Trends in the Panel Event-Study Design," American Economic Review, American Economic Association, vol. 109(9), pages 3307-3338, September.
    5. David Card, 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market," ILR Review, Cornell University, ILR School, vol. 43(2), pages 245-257, January.
    6. Arora, Ashish & Ceccagnoli, Marco & Cohen, Wesley M., 2008. "R&D and the patent premium," International Journal of Industrial Organization, Elsevier, vol. 26(5), pages 1153-1179, September.
    7. Winter, Sidney G., 1984. "Schumpeterian competition in alternative technological regimes," Journal of Economic Behavior & Organization, Elsevier, vol. 5(3-4), pages 287-320.
    8. Dosi, Giovanni & Grazzi, Marco & Moschella, Daniele, 2015. "Technology and costs in international competitiveness: From countries and sectors to firms," Research Policy, Elsevier, vol. 44(10), pages 1795-1814.
    9. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    10. Behrens, Paul & Rodrigues, João F.D. & Brás, Tiago & Silva, Carlos, 2016. "Environmental, economic, and social impacts of feed-in tariffs: A Portuguese perspective 2000–2010," Applied Energy, Elsevier, vol. 173(C), pages 309-319.
    11. Al-Sunaidy, A. & Green, R., 2006. "Electricity deregulation in OECD (Organization for Economic Cooperation and Development) countries," Energy, Elsevier, vol. 31(6), pages 769-787.
    12. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. Soete, Luc, 1987. "The impact of technological innovation on international trade patterns: The evidence reconsidered," Research Policy, Elsevier, vol. 16(2-4), pages 101-130, August.
    14. Paroma Sanyal & Suman Ghosh, 2013. "Product Market Competition and Upstream Innovation: Evidence from the U.S. Electricity Market Deregulation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 237-254, March.
    15. Lee, Boon L. & Wilson, Clevo & Simshauser, Paul & Majiwa, Eucabeth, 2021. "Deregulation, efficiency and policy determination: An analysis of Australia's electricity distribution sector," Energy Economics, Elsevier, vol. 98(C).
    16. Broecks, Kevin P.F. & van Egmond, Sander & van Rijnsoever, Frank J. & Verlinde-van den Berg, Marlies & Hekkert, Marko P., 2016. "Persuasiveness, importance and novelty of arguments about Carbon Capture and Storage," Environmental Science & Policy, Elsevier, vol. 59(C), pages 58-66.
    17. Jamasb, Tooraj & Pollitt, Michael G., 2015. "Why and how to subsidise energy R+D: Lessons from the collapse and recovery of electricity innovation in the UK," Energy Policy, Elsevier, vol. 83(C), pages 197-205.
    18. Jean-Michel Glachant & Paul L. Joskow & Michael G. Pollitt (ed.), 2021. "Handbook on Electricity Markets," Books, Edward Elgar Publishing, number 18895.
    19. Wang, Nan & Mogi, Gento, 2017. "Deregulation, market competition, and innovation of utilities: Evidence from Japanese electric sector," Energy Policy, Elsevier, vol. 111(C), pages 403-413.
    20. Marino, Marianna & Parrotta, Pierpaolo & Valletta, Giacomo, 2019. "Electricity (de)regulation and innovation," Research Policy, Elsevier, vol. 48(3), pages 748-758.
    21. Jean-Michel Glachant & Paul L. Joskow & Michael G. Pollitt, 2021. "Introduction to the Handbook on Electricity Markets," Chapters, in: Jean-Michel Glachant & Paul L. Joskow & Michael G. Pollitt (ed.), Handbook on Electricity Markets, chapter 1, pages 1-11, Edward Elgar Publishing.
    22. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    23. Goto, Mika & Tsutsui, Miki, 2008. "Technical efficiency and impacts of deregulation: An analysis of three functions in U.S. electric power utilities during the period from 1992 through 2000," Energy Economics, Elsevier, vol. 30(1), pages 15-38, January.
    24. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
    25. Fagerberg, Jan, 1988. "International Competitiveness: Errata," Economic Journal, Royal Economic Society, vol. 98(393), pages 1203-1203, December.
    26. Giovanni Amendola & Giovanni Dosi & Erasmo Papagni, 1993. "The dynamics of international competitiveness," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 129(3), pages 451-471, September.
    27. Mark A. Cohen & Adeline Tubb, 2018. "The Impact of Environmental Regulation on Firm and Country Competitiveness: A Meta-analysis of the Porter Hypothesis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(2), pages 371-399.
    28. Kim, Jihwan & Kim, Yeonbae & Flacher, David, 2012. "R&D investment of electricity-generating firms following industry restructuring," Energy Policy, Elsevier, vol. 48(C), pages 103-117.
    29. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    30. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    31. Tamaschke, R. & Docwra, G. & Stillman, R., 2005. "Measuring market power in electricity generation: A long-term perspective using a programming model," Energy Economics, Elsevier, vol. 27(2), pages 317-335, March.
    32. Fagerberg, Jan, 1988. "International Competitiveness," Economic Journal, Royal Economic Society, vol. 98(391), pages 355-374, June.
    33. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    34. Goto, Mika & Sueyoshi, Toshiyuki, 2009. "Productivity growth and deregulation of Japanese electricity distribution," Energy Policy, Elsevier, vol. 37(8), pages 3130-3138, August.
    35. Susan Athey & Scott Stern, 1998. "An Empirical Framework for Testing Theories About Complimentarity in Organizational Design," NBER Working Papers 6600, National Bureau of Economic Research, Inc.
    36. Carlo Cambini & Federico Caviggioli & Giuseppe Scellato, 2016. "Innovation and market regulation: evidence from the European electricity industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(8), pages 734-752, November.
    37. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    38. Zhao, Pengxiang & Dong, Zhao Yang & Meng, Ke & Kong, Weicong & Yang, Jiajia, 2021. "Household power usage pattern filtering-based residential electricity plan recommender system," Applied Energy, Elsevier, vol. 298(C).
    39. Paroma Sanyal & Linda R. Cohen, 2009. "Powering Progress: Restructuring, Competition, and R&D in the U.S. Electric Utility Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 41-80.
    40. Hilary Hoynes & Diane Whitmore Schanzenbach & Douglas Almond, 2016. "Long-Run Impacts of Childhood Access to the Safety Net," American Economic Review, American Economic Association, vol. 106(4), pages 903-934, April.
    41. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    42. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    43. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    44. Albert G.Z. Hu & I.P.L. Png, 2013. "Patent rights and economic growth: evidence from cross-country panels of manufacturing industries," Oxford Economic Papers, Oxford University Press, vol. 65(3), pages 675-698, July.
    45. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Nan & Mogi, Gento, 2017. "Deregulation, market competition, and innovation of utilities: Evidence from Japanese electric sector," Energy Policy, Elsevier, vol. 111(C), pages 403-413.
    2. Marino, Marianna & Parrotta, Pierpaolo & Valletta, Giacomo, 2019. "Electricity (de)regulation and innovation," Research Policy, Elsevier, vol. 48(3), pages 748-758.
    3. de Rassenfosse, Gaétan & Grazzi, Marco & Moschella, Daniele & Pellegrino, Gabriele, 2022. "International patent protection and trade: Transaction-level evidence," European Economic Review, Elsevier, vol. 147(C).
    4. Jamasb, Tooraj & Pollitt, Michael G., 2015. "Why and how to subsidise energy R+D: Lessons from the collapse and recovery of electricity innovation in the UK," Energy Policy, Elsevier, vol. 83(C), pages 197-205.
    5. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    6. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    7. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    8. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    9. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    10. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.
    11. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    12. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    13. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    14. repec:hal:spmain:info:hdl:2441/4b9o704lm99vm9u7s9e6fdpp6r is not listed on IDEAS
    15. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    16. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    17. repec:spo:wpecon:info:hdl:2441/f6h8764enu2lskk9p544jc8op is not listed on IDEAS
    18. Aldieri, Luigi & Bruno, Bruna & Makkonen, Teemu & Vinci, Concetto Paolo, 2023. "Environmental innovations, geographically mediated knowledge spillovers, economic and environmental performance," Resources Policy, Elsevier, vol. 81(C).
    19. Dario Guarascio & Mario Pianta & Francesco Bogliacino, 2017. "Export, R&D and New Products: A Model and a Test on European Industries," Economic Complexity and Evolution, in: Andreas Pyka & Uwe Cantner (ed.), Foundations of Economic Change, pages 393-432, Springer.
    20. Cl'ement de Chaisemartin & Xavier D'Haultf{oe}uille, 2021. "Two-Way Fixed Effects and Differences-in-Differences with Heterogeneous Treatment Effects: A Survey," Papers 2112.04565, arXiv.org, revised Jun 2022.
    21. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    22. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    23. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.