IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000683.html
   My bibliography  Save this article

Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen

Author

Listed:
  • Xin, Haihui
  • Tian, Wenjiang
  • Zhou, Banghao
  • Qi, Xu-yao
  • Li, Jianfeng
  • Wu, Jinfeng
  • Wang, De-ming

Abstract

Coal fire is the major hazard to energy security and the environment in the world. Liquid CO2 and liquid N2 are widely used in coal mines. However, the spontaneous combustion tendency and re-ignition of coal which is dealt with liquid CO2 and liquid N2 remain unclear. To solve the problem, this paper studied the pore and oxidation property changes in coal treated by liquid carbon dioxide and liquid nitrogen, applying SEM, isothermal adsorption and thermogravimetric experiments. The results showed that the matrix of coal soaked by liquid CO2 and liquid N2 is shrunk due to cold condition in the context of low temperature (236 K, 77 K). The pore and crack are grown with the increase of total pore volume and specific surface area, which result in increased the oxygen absorption capacity, especially when being soaked by liquid N2. It can be explained liquid CO2 mainly promotes the increase of mesopores in 3.5 nm – 4 nm. Because of the low temperature of liquid N2, new micropores are formed in 0.45 nm–0.55 nm and mesopores in 2 nm–4 nm are increased. After coal is soaked by liquid CO2 and liquid N2, the pore surface becomes rougher and the pore structure for liquid N2 tends to be more complex. Pore evolution promotes oxygen absorption by the coal, which results in the decrease of characteristic temperatures in coal oxidation and combustion stages. After coal is soaked in liquid CO2 and liquid N2, the oxidation and combustion intensity of coal has increased and the average apparent activation energy of oxidation has dropped by 9.65%–11.33% and 15.10%–17.62% respectively, which indicates that their tendency of spontaneous combustion and reignition increases. In all, this study reveals the evolution of pore structure and changes in oxidation property of coal soaked by liquid CO2 and liquid N2, focusing on providing more information for effectively controlling coal spontaneous combustion after using liquid CO2 and liquid N2.

Suggested Citation

  • Xin, Haihui & Tian, Wenjiang & Zhou, Banghao & Qi, Xu-yao & Li, Jianfeng & Wu, Jinfeng & Wang, De-ming, 2023. "Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000683
    DOI: 10.1016/j.energy.2023.126674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cattaneo, Cristina & Manera, Matteo & Scarpa, Elisa, 2011. "Industrial coal demand in China: A provincial analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 12-35, January.
    2. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Saini, Varinder & Gupta, Ravi P. & Arora, Manoj K., 2016. "Environmental impact studies in coalfields in India: A case study from Jharia coal-field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1222-1239.
    4. Kim, Hakduck & Choi, Jeongmin & Lim, Heechang & Song, Juhun, 2021. "Enhanced combustion processes of liquid carbon dioxide (LCO2)–low rank coal slurry at high pressures," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaoming Wei & Li Ma & Hu Wen & Xin Yi & Jun Deng & Shangming Liu & Zhenbao Li & Duo Zhang, 2023. "Deformation-Failure Characteristics of Coal with Liquid CO 2 Cryogenic-Freezing Process: An Experimental and Digital Study," Energies, MDPI, vol. 16(17), pages 1-19, August.
    2. Bai, Gang & Zhou, Zhongjie & Wang, Jue & Tian, Xiangliang & Zhou, Xihua & Li, Xianlin & Chen, Ying, 2023. "Experimental study on damage law of liquid CO2 cyclic freeze–thaw coal," Energy, Elsevier, vol. 284(C).
    3. Zang, Jie & Liu, Jialong & He, Jiabei & Zhang, Xiapeng, 2023. "Characterization of the pore structure in Chinese anthracite coal using FIB-SEM tomography and deep learning-based segmentation," Energy, Elsevier, vol. 282(C).
    4. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    5. He, Jun & Wang, Bohao & Lu, Zhongliang, 2023. "Experimental study on the effect of magma intrusion and temperature on the pore structure of coal," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    2. Shudong Wang & Qinfeng Xing & Xiangqian Wang & Qian Wu, 2023. "Demand forecasting model of coal logistics based on drosophila-grey neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(2), pages 807-815, April.
    3. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    4. Amanda L. Johnson & Caroline X. Gao & Martine Dennekamp & Grant J. Williamson & David Brown & Matthew T. C. Carroll & Jillian F. Ikin & Anthony Del Monaco & Michael J. Abramson & Yuming Guo, 2019. "Associations between Respiratory Health Outcomes and Coal Mine Fire PM 2.5 Smoke Exposure: A Cross-Sectional Study," IJERPH, MDPI, vol. 16(21), pages 1-15, November.
    5. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    6. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    7. Zude Cheng & Haitao Wang & Junsheng Feng & Yongfang Xia & Hui Dong, 2021. "Energy and Exergy Efficiency Analysis of Fluid Flow and Heat Transfer in Sinter Vertical Cooler," Energies, MDPI, vol. 14(15), pages 1-18, July.
    8. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    9. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    10. Vishal, Vikram & Mahanta, Bankim & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2018. "Simulation of CO2 enhanced coalbed methane recovery in Jharia coalfields, India," Energy, Elsevier, vol. 159(C), pages 1185-1194.
    11. Zaman, Rafia & Brudermann, Thomas & Kumar, S. & Islam, Nazrul, 2018. "A multi-criteria analysis of coal-based power generation in Bangladesh," Energy Policy, Elsevier, vol. 116(C), pages 182-192.
    12. Wang, Kai & Han, Tao & Deng, Jun & Zhang, Yanni, 2022. "Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China," Energy, Elsevier, vol. 254(PB).
    13. Xiang Gou & Qiyan Zhang & Yingfan Liu & Zifang Wang & Mulin Zou & Xuan Zhao, 2018. "A Novel Method of Kinetic Analysis and Its Application to Pulverized Coal Combustion under Different Oxygen Concentrations," Energies, MDPI, vol. 11(7), pages 1-15, July.
    14. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    15. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    16. Zhang, Kun & Zhang, Zong-Yong & Liang, Qiao-Mei, 2017. "An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization," Energy Policy, Elsevier, vol. 103(C), pages 203-211.
    17. You, Jing, 2013. "China's challenge for decarbonized growth: Forecasts from energy demand models," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 652-668.
    18. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Estimation of potential savings from reducing unburned combustible losses in coal-fired systems," Applied Energy, Elsevier, vol. 87(12), pages 3792-3799, December.
    19. Salisu, Afees A. & Adediran, Idris A., 2019. "Assessing the inflation hedging potential of coal and iron ore in Australia," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    20. Lei Jiang & Ling Bai, 2017. "Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach," Sustainability, MDPI, vol. 9(12), pages 1-17, December.

    More about this item

    Keywords

    Pore structure evolution; Oxidation characteristic; Liquid CO2 and liquid N2; Coal spontaneous combustion;
    All these keywords.

    JEL classification:

    • N2 - Economic History - - Financial Markets and Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.