IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222004662.html
   My bibliography  Save this article

Contributing to regional decarbonization: Australia's potential to supply zero-carbon commodities to the Asia-Pacific

Author

Listed:
  • Burke, Paul J.
  • Beck, Fiona J.
  • Aisbett, Emma
  • Baldwin, Kenneth G.H.
  • Stocks, Matthew
  • Pye, John
  • Venkataraman, Mahesh
  • Hunt, Janet
  • Bai, Xuemei

Abstract

The Asia-Pacific has experienced prodigious growth in energy use and is by far the world's largest greenhouse-gas emitting region. Australia has played a leading role in meeting the region's energy and resource needs, becoming the world's largest exporter of coal, liquefied natural gas, iron ore, and alumina. Our analysis shows that these exports are tied to sizeable consequential emissions at the point of use or processing, accounting for about 8.6% of the total greenhouse gas emissions of the Asia-Pacific. The paper investigates three pathways by which Australia could instead export zero-carbon energy and products: direct exports of renewable electricity via sub-sea cables, exports of zero-carbon fuels such as green hydrogen, and the export of “green” metals processed from Australian ores using renewable energy. Carrying out robust, high-level calculations we find that Australia has the land and renewable energy resources to become a key exporter of these commodities. Realization of this potential relies on ongoing cost reductions, growing demand-side interest linked to meeting ambitious emission reduction targets in the region, and the development of cross-border frameworks for clean energy trade. If it were to achieve this goal, Australia could make a sizeable contribution to regional decarbonization via renewable-energy based exports.

Suggested Citation

  • Burke, Paul J. & Beck, Fiona J. & Aisbett, Emma & Baldwin, Kenneth G.H. & Stocks, Matthew & Pye, John & Venkataraman, Mahesh & Hunt, Janet & Bai, Xuemei, 2022. "Contributing to regional decarbonization: Australia's potential to supply zero-carbon commodities to the Asia-Pacific," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004662
    DOI: 10.1016/j.energy.2022.123563
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Cheng, Cheng & Nadolny, Anna, 2021. "A zero-carbon, reliable and affordable energy future in Australia," Energy, Elsevier, vol. 220(C).
    2. Arens, Marlene & Åhman, Max & Vogl, Valentin, 2021. "Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Kyung-Min Nam & Heeyeun Yoon, 2019. "Air pollution in East Asia and its regional and socioeconomic impacts: an introduction," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(2), pages 249-254, October.
    4. Yann Robiou du Pont & Malte Meinshausen, 2018. "Warming assessment of the bottom-up Paris Agreement emissions pledges," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Xuemei Bai & Richard J. Dawson & Diana Ürge-Vorsatz & Gian C. Delgado & Aliyu Salisu Barau & Shobhakar Dhakal & David Dodman & Lykke Leonardsen & Valérie Masson-Delmotte & Debra C. Roberts & Seth Schu, 2018. "Six research priorities for cities and climate change," Nature, Nature, vol. 555(7694), pages 23-25, March.
    6. Taran Fæhn, Cathrine Hagem, Lars Lindholt, Ståle Mæland, and Knut Einar Rosendahl, 2017. "Climate policies in a fossil fuel producing country demand versus supply side policies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    8. Li, Shupeng & Niu, Liping & Yue, Qiang & Zhang, Tingan, 2022. "Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry," Energy, Elsevier, vol. 239(PB).
    9. Ashish Gulagi & Dmitrii Bogdanov & Mahdi Fasihi & Christian Breyer, 2017. "Can Australia Power the Energy-Hungry Asia with Renewable Energy?," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    10. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    11. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    12. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    13. Fergus Green & Richard Denniss, 2018. "Cutting with both arms of the scissors: the economic and political case for restrictive supply-side climate policies," Climatic Change, Springer, vol. 150(1), pages 73-87, September.
    14. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.
    15. Heinz Schandl & Marina Fischer‐Kowalski & James West & Stefan Giljum & Monika Dittrich & Nina Eisenmenger & Arne Geschke & Mirko Lieber & Hanspeter Wieland & Anke Schaffartzik & Fridolin Krausmann & S, 2018. "Global Material Flows and Resource Productivity: Forty Years of Evidence," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 827-838, August.
    16. Green, Fergus & Denniss, Richard, 2018. "Cutting with both arms of the scissors: the economic and political case for restrictive supply-side climate policies," LSE Research Online Documents on Economics 87734, London School of Economics and Political Science, LSE Library.
    17. Backhaus, Klaus & Gausling, Philipp & Hildebrand, Luise, 2015. "Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec," Energy, Elsevier, vol. 82(C), pages 905-913.
    18. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    19. Blakers, Andrew & Stocks, Matthew & Lu, Bin & Cheng, Cheng, 2021. "The observed cost of high penetration solar and wind electricity," Energy, Elsevier, vol. 233(C).
    20. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    21. Andreas Goldthau & Llewelyn Hughes, 2020. "Protect global supply chains for low-carbon technologies," Nature, Nature, vol. 585(7823), pages 28-30, September.
    22. White, Lee V. & Fazeli, Reza & Cheng, Wenting & Aisbett, Emma & Beck, Fiona J. & Baldwin, Kenneth G.H. & Howarth, Penelope & O’Neill, Lily, 2021. "Towards emissions certification systems for international trade in hydrogen: The policy challenge of defining boundaries for emissions accounting," Energy, Elsevier, vol. 215(PA).
    23. Paul J. Burke & Thang N. Do, 2021. "Greening Asia's Economic Development," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 22-39, January.
    24. Edward Halawa & Geoffrey James & Xunpeng (Roc) Shi & Novieta H. Sari & Rabindra Nepal, 2018. "The Prospect for an Australian–Asian Power Grid: A Critical Appraisal," Energies, MDPI, vol. 11(1), pages 1-23, January.
    25. Philippe Le Billon & Berit Kristoffersen, 2020. "Just cuts for fossil fuels? Supply-side carbon constraints and energy transition," Environment and Planning A, , vol. 52(6), pages 1072-1092, September.
    26. Emma Aisbett & Jonathan Bonnitcha, 2021. "A Pareto-Improving Compensation Rule for Investment Treaties," Journal of International Economic Law, Oxford University Press, vol. 24(1), pages 181-202.
    27. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).
    28. Ahmed, Tofael & Mekhilef, Saad & Shah, Rakibuzzaman & Mithulananthan, N. & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "ASEAN power grid: A secure transmission infrastructure for clean and sustainable energy for South-East Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1420-1435.
    29. C. T. Vidya & K. P. Prabheesh, 2020. "Implications of COVID-19 Pandemic on the Global Trade Networks," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2408-2421, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul J. Burke, 2023. "On the way out: Government revenues from fossil fuels in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Le Billon & Berit Kristoffersen, 2020. "Just cuts for fossil fuels? Supply-side carbon constraints and energy transition," Environment and Planning A, , vol. 52(6), pages 1072-1092, September.
    2. Garth Day & Creina Day, 2022. "The supply-side climate policy of decreasing fossil fuel tax profiles: can subsidized reserves induce a green paradox?," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    3. Kathryn Harrison, 2020. "Political Institutions and Supply-Side Climate Politics: Lessons from Coal Ports in Canada and the United States," Global Environmental Politics, MIT Press, vol. 20(4), pages 51-72, Autumn.
    4. Tine S. Handeland & Oluf Langhelle, 2021. "A Petrostate’s Outlook on Low-Carbon Transitions: The Discursive Frames of Petroleum Policy in Norway," Energies, MDPI, vol. 14(17), pages 1-15, August.
    5. Srikkanth Ramachandran & Kais Siala & Cristina de La Rúa & Tobias Massier & Arif Ahmed & Thomas Hamacher, 2021. "Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore," Energies, MDPI, vol. 14(21), pages 1-23, November.
    6. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    7. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 144.
    8. David Firnando Silalahi & Andrew Blakers & Bin Lu & Cheng Cheng, 2022. "Indonesia’s Vast Off-River Pumped Hydro Energy Storage Potential," Energies, MDPI, vol. 15(9), pages 1-18, May.
    9. Mehling, M. A., 2023. "Supply-Side Crediting to Manage Climate Policy Spillover Effects," Cambridge Working Papers in Economics 2345, Faculty of Economics, University of Cambridge.
    10. Jason Monios, 2023. "The Moral Limits of Market-Based Mechanisms: An Application to the International Maritime Sector," Journal of Business Ethics, Springer, vol. 187(2), pages 283-299, October.
    11. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    12. Baruah, Debendra Chandra & Enweremadu, Christopher Chintua, 2019. "Prospects of decentralized renewable energy to improve energy access: A resource-inventory-based analysis of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 328-341.
    13. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Paul J. Burke, 2023. "On the way out: Government revenues from fossil fuels in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 1-17, January.
    15. Benchekroun, Hassan & van der Meijden, Gerard & Withagen, Cees, 2020. "OPEC, unconventional oil and climate change - On the importance of the order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    16. Prest, Brian C., 2020. "Supply-Side Reforms to Oil and Gas Production on Federal Lands: Modeling the Implications for Climate Emissions, Revenues, and Production Shifts," RFF Working Paper Series 20-16, Resources for the Future.
    17. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    18. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
    19. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2021. "Impact of the Nature of Energy Management and Responses to Policies Regarding Solar and Wind Pricing: A Qualitative Study of the Australian Electricity Markets," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 191-205.
    20. Lukas Folkens & Petra Schneider, 2022. "Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT)," Sustainability, MDPI, vol. 14(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.