IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001591.html
   My bibliography  Save this article

Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production

Author

Listed:
  • Du, Xiangbei
  • He, Wenchang
  • Gao, Shangqin
  • Liu, Dong
  • Wu, Wenge
  • Tu, Debao
  • Kong, Lingcong
  • Xi, Min

Abstract

Finding sustainable ways to produce more grain while minimizing negative environmental impacts is critical. The raised bed planting (RBP) pattern was shown to be an effective measure to enhance the productivity of wheat after rice production in areas vulnerable to waterlogging. However, comprehensive evaluations from environmental, economic and ecosystem benefit perspectives have rarely been performed. In this study, a consecutive 5-year field experiment was conducted in the Yangtze River Plain, China, with two planting patterns, flat planting (FP) and RBP, to assess the environmental footprint, energy balance and cost-benefit analysis for wheat after rice production. The results showed that the RBP pattern generated significant effects—increased grain yield, net return and energy use efficiency and a decreased carbon footprint per unit of yield/biomass—compared with the FP pattern. The advantages of the RBP pattern over the FP pattern were ascribed mainly to the 13.6% reduction in production costs, 10.1% lower energy inputs, and 10.0% reduction in indirect greenhouse gas emissions benefiting from saved machinery, diesel and seed inputs. The energy output and gross crop value for the RBP pattern were 13.3% and 15.1% higher than those for the FP pattern. Therefore, the RBP pattern reduced production costs and energy inputs but increased wheat production, energy use efficiency, and economic benefits and minimized the environmental impact. In conclusion, the RBP pattern is promising for wheat after rice cultivation from the perspective of achieving sustainable agricultural development and ensuring national food security.

Suggested Citation

  • Du, Xiangbei & He, Wenchang & Gao, Shangqin & Liu, Dong & Wu, Wenge & Tu, Debao & Kong, Lingcong & Xi, Min, 2022. "Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001591
    DOI: 10.1016/j.energy.2022.123256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rady, Mohamed O.A. & Semida, Wael M. & Howladar, Saad.M. & Abd El-Mageed, Taia A., 2021. "Raised beds modulate physiological responses, yield and water use efficiency of wheat (Triticum aestivum L) under deficit irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Singh, H. & Singh, A.K. & Kushwaha, H.L. & Singh, Amit, 2007. "Energy consumption pattern of wheat production in India," Energy, Elsevier, vol. 32(10), pages 1848-1854.
    3. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    4. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    5. Alhajj Ali, Salem & Tedone, Luigi & De Mastro, Giuseppe, 2013. "A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy," Energy, Elsevier, vol. 61(C), pages 308-318.
    6. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    7. Bergtold, Jason S. & Shanoyan, Aleksan & Fewell, Jason E. & Williams, Jeffery R., 2017. "Annual bioenergy crops for biofuels production: Farmers' contractual preferences for producing sweet sorghum," Energy, Elsevier, vol. 119(C), pages 724-731.
    8. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    9. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    10. Velmurugan, A. & Swarnam, T.P. & Ambast, S.K. & Kumar, Navneet, 2016. "Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics," Agricultural Water Management, Elsevier, vol. 168(C), pages 56-67.
    11. Ozkan, Burhan & Fert, Cemal & Karadeniz, C. Feyza, 2007. "Energy and cost analysis for greenhouse and open-field grape production," Energy, Elsevier, vol. 32(8), pages 1500-1504.
    12. Safa, M. & Samarasinghe, S., 2011. "Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand”," Energy, Elsevier, vol. 36(8), pages 5140-5147.
    13. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    14. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    15. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    16. You, Liangzhi & Spoor, Max & Ulimwengu, John & Zhang, Shemei, 2011. "Land use change and environmental stress of wheat, rice and corn production in China," China Economic Review, Elsevier, vol. 22(4), pages 461-473.
    17. Yigezu, Yigezu A. & Abbas, Enas & Swelam, Atef & Sabry, Sami R.S. & Moustafa, Moustafa A. & Halila, Habib, 2021. "Socioeconomic, biophysical, and environmental impacts of raised beds in irrigated wheat: A case study from Egypt," Agricultural Water Management, Elsevier, vol. 249(C).
    18. Kizilaslan, Halil, 2009. "Input-output energy analysis of cherries production in Tokat Province of Turkey," Applied Energy, Elsevier, vol. 86(7-8), pages 1354-1358, July.
    19. Manzoor H. Dar & Showkat A. Waza & Sarvesh Shukla & Najam W. Zaidi & Swati Nayak & Mosharaf Hossain & Arvind Kumar & Abdelbagi M. Ismail & Uma S. Singh, 2020. "Drought Tolerant Rice for Ensuring Food Security in Eastern India," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    20. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    21. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    22. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    23. Htwe, Than & Sinutok, Sutinee & Chotikarn, Ponlachart & Amin, Nowshad & Akhtaruzzaman, Md & Techato, Kuaanan & Hossain, Tareq, 2021. "Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Xiangbei & Wei, Zhi & Kong, Lingcong & Zhang, Ligan, 2022. "Optimal bed width for wheat following rice production with raised-bed planting in the Yangtze River Plain of China," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    2. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    3. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
    4. Jamali, Mohsen & Soufizadeh, Saeid & Yeganeh, Bijan & Emam, Yahya, 2021. "A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    6. Htwe, Than & Sinutok, Sutinee & Chotikarn, Ponlachart & Amin, Nowshad & Akhtaruzzaman, Md & Techato, Kuaanan & Hossain, Tareq, 2021. "Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar," Energy, Elsevier, vol. 214(C).
    7. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    8. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    10. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    11. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    12. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    13. Hossein Kazemi Author- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Iran, 2016. "Energy Balance in Modern Agroecosystems; Why and How?," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 101-104, June.
    14. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    15. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    17. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    18. Kumar, Pankaj & Brar, S.K. & Pandove, Gulab & Aulakh, C.S., 2021. "Bioformulation of Azotobacter spp. and Streptomyces badius on the productivity, economics and energetics of wheat (Triticum aestivum L.)," Energy, Elsevier, vol. 232(C).
    19. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    20. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.