IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221011725.html
   My bibliography  Save this article

Drastic enhancement of CO2 adsorption capacity by negatively charged sub-bituminous coal

Author

Listed:
  • Abid, Hussein Rasool
  • Iglauer, Stefan
  • Al-Yaseri, Ahmed
  • Keshavarz, Alireza

Abstract

Climate change is a key problem of the 21st century. Climate change is mainly caused by anthropogenic CO2 emissions, and one solution to this problem is to capture and store CO2 in deep coal seams, where it is immobilized by adsorption to the coal surface. Here we propose to modify the coal with methyl orange (MO), a typical dye that is also a major pollutant of the hydrosphere and removed thereby. Thus, raw and MO-modified coals were characterized to investigate their thermal stabilities, textural properties, carbon contents, surface characteristics, and CO2 adsorption on the coal samples was measured at typical storage conditions (323 K and pressures up to 37.5 bar). CO2 adsorption dramatically increased in the MO-coal, from 1.95 mol. kg−1 (raw coal) to 18.7 mol. kg −1.

Suggested Citation

  • Abid, Hussein Rasool & Iglauer, Stefan & Al-Yaseri, Ahmed & Keshavarz, Alireza, 2021. "Drastic enhancement of CO2 adsorption capacity by negatively charged sub-bituminous coal," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221011725
    DOI: 10.1016/j.energy.2021.120924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    2. Burgess, Matthew G. & Ritchie, Justin & Shapland, John & Pielke, Roger Jr, 2020. "IPCC baseline scenarios over-project CO2 emissions and economic growth," SocArXiv ahsxw, Center for Open Science.
    3. Shaheen, Susan A & Lipman, Timothy E, 2007. "Reducing Greenhouse Emissions and Fuel Consumption: Sustainable Approaches for Surface Transportation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c66j062, Institute of Transportation Studies, UC Berkeley.
    4. Shaheen, Susan & Lipman, Timothy, 2007. "Reducing Greenhouse Emissions and Fuel Consumption," Institute of Transportation Studies, Working Paper Series qt69c427zk, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şahan, Duygu & Tuna, Okan, 2018. "Environmental innovation of transportation sector in OECD countries," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 157-170, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    4. Yu, Biying & Ma, Ye & Xue, Meimei & Tang, Baojun & Wang, Bin & Yan, Jinyue & Wei, Yi-Ming, 2017. "Environmental benefits from ridesharing: A case of Beijing," Applied Energy, Elsevier, vol. 191(C), pages 141-152.
    5. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    6. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    7. Lisa Dang & Widar von Arx & Jonas Frölicher, 2021. "The Impact of On-Demand Collective Transport Services on Sustainability: A Comparison of Various Service Options in a Rural and an Urban Area of Switzerland," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    8. Martínez-Jaramillo, Juan Esteban & Arango-Aramburo, Santiago & Álvarez-Uribe, Karla C. & Jaramillo-Álvarez, Patricia, 2017. "Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia," Energy Policy, Elsevier, vol. 101(C), pages 101-108.
    9. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    10. Bo Pang & Li Chen & Zuomin Dong, 2022. "Data-Driven Degradation Modeling and SOH Prediction of Li-Ion Batteries," Energies, MDPI, vol. 15(15), pages 1-12, August.
    11. Shaheen, Susan A. & Bejamin-Chung, Jade & Allen, Denise & Howe-Steiger, Linda, 2009. "Achieving California’s Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms," Institute of Transportation Studies, Working Paper Series qt8bm4t7w5, Institute of Transportation Studies, UC Davis.
    12. Nur Sabahiah Abdul Sukor & Surachai Airak & Sitti Asmah Hassan, 2021. "“More Than a Free Bus Ride”—Exploring Young Adults’ Perceptions of Free Bus Services Using a Qualitative Approach: A Case Study of Penang, Malaysia," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    13. Cohen, Adam P. & Shaheen, Susan & McKenzie, Ryan, 2008. "Carsharing: A Guide for Local Planners," Institute of Transportation Studies, Working Paper Series qt4kf3x31h, Institute of Transportation Studies, UC Davis.
    14. Ye Ma & Biying Yu & Meimei Xue, 2018. "Spatial Heterogeneous Characteristics of Ridesharing in Beijing–Tianjin–Hebei Region of China," Energies, MDPI, vol. 11(11), pages 1-21, November.
    15. Kim, Kyeongsu, 2015. "Can carsharing meet the mobility needs for the low-income neighborhoods? Lessons from carsharing usage patterns in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 249-260.
    16. Aditjandra, Paulus Teguh & Mulley, Corinne & Nelson, John D., 2013. "The influence of neighbourhood design on travel behaviour: Empirical evidence from North East England," Transport Policy, Elsevier, vol. 26(C), pages 54-65.
    17. Burgess, Matthew G. & Langendorf, Ryan E. & Ippolito, Tara & Pielke, Roger Jr, 2020. "Optimistically biased economic growth forecasts and negatively skewed annual variation," SocArXiv vndqr, Center for Open Science.
    18. Irfan Khan & Sanjarbek Ruzimov & Nicola Amati & Andrea Tonoli, 2022. "Study of the Impact of E-Machine in Hybrid Dual Clutch Transmission Powertrain," Energies, MDPI, vol. 15(3), pages 1-19, January.
    19. Santos, João & Borges, Afonso S. & Domingos, Tiago, 2021. "Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014," Energy Economics, Elsevier, vol. 101(C).
    20. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221011725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.