IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3214-d184046.html
   My bibliography  Save this article

Spatial Heterogeneous Characteristics of Ridesharing in Beijing–Tianjin–Hebei Region of China

Author

Listed:
  • Ye Ma

    (Center for Energy and Environment Policy Research, Beijing Institute of Technology, Beijing 100181, China
    BIT @ Didi Joint Laboratory of Sharing Economy and Behavior-Energy, Beijing 100081, China
    School of Management and Economics, Beijing Institute of Technology, Beijing 100181, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

  • Biying Yu

    (Center for Energy and Environment Policy Research, Beijing Institute of Technology, Beijing 100181, China
    BIT @ Didi Joint Laboratory of Sharing Economy and Behavior-Energy, Beijing 100081, China
    School of Management and Economics, Beijing Institute of Technology, Beijing 100181, China
    Beijing Key Lab of Energy Economics and Environmental Management, Beijing 100081, China)

  • Meimei Xue

    (Center for Energy and Environment Policy Research, Beijing Institute of Technology, Beijing 100181, China
    BIT @ Didi Joint Laboratory of Sharing Economy and Behavior-Energy, Beijing 100081, China
    School of Management and Economics, Beijing Institute of Technology, Beijing 100181, China
    Beijing Key Lab of Energy Economics and Environmental Management, Beijing 100081, China)

Abstract

Ridesharing is becoming popular in many cities in China where transportation alternatives are easily accessible. Individuals typically access services by smartphone app developed by ridesharing company to join a trip offered by other private vehicle’s drivers who share same or geographically close destination. However, there are some internal differences within this region indicating the service heterogeneity of ridesharing. In order to discover this regional heterogeneity, this paper chooses Beijing–Tianjin–Hebei (BTH) region as research target and uses BTH regional ridesharing data provided by DiDi Chuxing Company. Then, this paper conducts an in-depth study by summarizing the travel pattern characteristics and evaluating the environmental impacts that result from individuals participating in ridesharing services. Lifecycle analysis of fuel and environmental input–output are applied to estimate the direct and indirect environmental impact separately. The results reveal heterogeneous spatial heterogeneous of ridesharing, including travel pattern and environmental influence caused by service demand and supply, which results from the unbalance of regional development and infrastructure construction condition of the transportation system, and other travel behavior differences.

Suggested Citation

  • Ye Ma & Biying Yu & Meimei Xue, 2018. "Spatial Heterogeneous Characteristics of Ridesharing in Beijing–Tianjin–Hebei Region of China," Energies, MDPI, vol. 11(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3214-:d:184046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin, Elliot & Shaheen, Susan Alison & Lidicker, Jeffrey, 2010. "Carsharing’S Impact On Household Vehicle Holdings: Results From A North American Shared-Use Vehicle Survey," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0850h6r5, Institute of Transportation Studies, UC Berkeley.
    2. Martin, Elliot & Shaheen, Susan A & Lidicker, Jeffrey, 2010. "Impact of Carsharing on Household Vehicle Holdings: Resultsvfrom a North American Shared-Use Vehicle Survey," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3bn9n6pq, Institute of Transportation Studies, UC Berkeley.
    3. Han, Rong & Yu, Bi-Ying & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2017. "Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective," Energy Policy, Elsevier, vol. 106(C), pages 298-309.
    4. Mishra, Gouri Shankar & Clewlow, Regina R. & Mokhtarian, Patricia L. & Widaman, Keith F., 2015. "The effect of carsharing on vehicle holdings and travel behavior: A propensity score and causal mediation analysis of the San Francisco Bay Area," Research in Transportation Economics, Elsevier, vol. 52(C), pages 46-55.
    5. Martin, Elliot & Shaheen, Susan Alison & Lidicker, Jeffrey, 2010. "Carsharing’S Impact On Household Vehicle Holdings: Results From A North American Shared-Use Vehicle Survey," Institute of Transportation Studies, Working Paper Series qt0850h6r5, Institute of Transportation Studies, UC Davis.
    6. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    7. Biao Yin & Liu Liu & Nicolas Coulombel & Vincent Viguie, 2018. "Appraising the environmental benefits of ride-sharing: The Paris region case study," Post-Print hal-01695082, HAL.
    8. Marcińczak, Szymon & Bartosiewicz, Bartosz, 2018. "Commuting patterns and urban form: Evidence from Poland," Journal of Transport Geography, Elsevier, vol. 70(C), pages 31-39.
    9. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    10. Yu, Biying & Ma, Ye & Xue, Meimei & Tang, Baojun & Wang, Bin & Yan, Jinyue & Wei, Yi-Ming, 2017. "Environmental benefits from ridesharing: A case of Beijing," Applied Energy, Elsevier, vol. 191(C), pages 141-152.
    11. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    12. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    13. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    14. Shaheen, Susan PhD & Chan, Nelson & Gaynor, Theresa, 2016. "Casual Carpooling in the San Francisco Bay Area: Understanding User Characteristics, Behaviors, and Motivations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4dh2h0rf, Institute of Transportation Studies, UC Berkeley.
    15. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    16. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2013. "Evaluating the direct and indirect rebound effects in household energy consumption behavior: A case study of Beijing," Energy Policy, Elsevier, vol. 57(C), pages 441-453.
    17. Shaheen, Susan A & Lipman, Timothy E, 2007. "Reducing Greenhouse Emissions and Fuel Consumption: Sustainable Approaches for Surface Transportation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c66j062, Institute of Transportation Studies, UC Berkeley.
    18. Donald Anderson, 2014. "“Not just a taxi”? For-profit ridesharing, driver strategies, and VMT," Transportation, Springer, vol. 41(5), pages 1099-1117, September.
    19. Shaheen, Susan & Lipman, Timothy, 2007. "Reducing Greenhouse Emissions and Fuel Consumption," Institute of Transportation Studies, Working Paper Series qt69c427zk, Institute of Transportation Studies, UC Davis.
    20. Yuanyuan Zhang & Yuming Zhang, 2018. "Examining the Relationship between Household Vehicle Ownership and Ridesharing Behaviors in the United States," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    21. Johanna Kopp & Regine Gerike & Kay Axhausen, 2015. "Do sharing people behave differently? An empirical evaluation of the distinctive mobility patterns of free-floating car-sharing members," Transportation, Springer, vol. 42(3), pages 449-469, May.
    22. Clewlow, Regina R., 2016. "Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area," Transport Policy, Elsevier, vol. 51(C), pages 158-164.
    23. Martin, Elliot W & Shaheen, Susan A, 2011. "Greenhouse Gas Emission Impacts of Carsharing in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6wr90040, Institute of Transportation Studies, UC Berkeley.
    24. Gabor J. Szekely & Maria L. Rizzo, 2005. "Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 151-183, September.
    25. Yanwei Li & Araz Taeihagh & Martin De Jong, 2018. "The Governance of Risks in Ridesharing: A Revelatory Case from Singapore," Energies, MDPI, vol. 11(5), pages 1-21, May.
    26. Huanmei Qin & Jianqiang Gao & Hongzhi Guan & Hongbo Chi, 2017. "Estimating heterogeneity of car travelers on mode shifting behavior based on discrete choice models," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(8), pages 914-927, November.
    27. Shaheen, Susan A. & Chan, Nelson D. & Gaynor, Teresa, 2016. "Casual carpooling in the San Francisco Bay Area: Understanding user characteristics, behaviors, and motivations," Transport Policy, Elsevier, vol. 51(C), pages 165-173.
    28. Habib, Khandker Nurul & Weiss, Adam & Hasnine, Sami, 2018. "On the heterogeneity and substitution patterns in mobility tool ownership choices of post-secondary students: The case of Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 650-665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soltani, Ali & Allan, Andrew & Khalaj, Fahimeh & Pojani, Dorina & Mehdizadeh, Milad, 2021. "Ridesharing in Adelaide: Segmentation of users," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Nguyen Hoang-Tung & Hoang Thuy Linh & Hoang Van Cuong & Phan Le Binh & Shinichi Takeda & Hironori Kato, 2022. "Ride-Hailing Service Adoption and Local Context in Motorcycle-Based Societies: Case Study in Hanoi, Vietnam," Sustainability, MDPI, vol. 14(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Chen & Hongyu Zheng & Ze Wang & Xiqun Chen, 2021. "Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires," Transportation, Springer, vol. 48(4), pages 1541-1561, August.
    2. Yu, Biying & Ma, Ye & Xue, Meimei & Tang, Baojun & Wang, Bin & Yan, Jinyue & Wei, Yi-Ming, 2017. "Environmental benefits from ridesharing: A case of Beijing," Applied Energy, Elsevier, vol. 191(C), pages 141-152.
    3. Julie Bulteau & Thierry Feuillet & Sophie Dantan, 2019. "Carpooling and carsharing for commuting in the Paris region: A comprehensive exploration of the individual and contextual correlates of their uses," Post-Print hal-02113257, HAL.
    4. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    6. Kent, Jennifer & Dowling, Robyn & Maalsen, Sophia, 2017. "Catalysts for transport transitions: Bridging the gap between disruptions and change," Journal of Transport Geography, Elsevier, vol. 60(C), pages 200-207.
    7. Rotaris, Lucia & Danielis, Romeo & Maltese, Ila, 2019. "Carsharing use by college students: The case of Milan and Rome," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 239-251.
    8. Rodrigo Gandia & Fabio Antonialli & Julia Oliveira & Joel Sugano & Isabelle Nicolaï & Izabela Cardoso Oliveira, 2021. "Willingness to use MaaS in a developing country," Post-Print hal-03687590, HAL.
    9. Maria Juschten & Timo Ohnmacht & Vu Thi Thao & Regine Gerike & Reinhard Hössinger, 2019. "Carsharing in Switzerland: identifying new markets by predicting membership based on data on supply and demand," Transportation, Springer, vol. 46(4), pages 1171-1194, August.
    10. Pierpaolo D’Urso & Alessio Guandalini & Francesca Romana Mallamaci & Vincenzina Vitale & Laura Bocci, 2021. "To Share or not to Share? Determinants of Sharing Mobility in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 647-692, April.
    11. Dawei Li & Yuchen Song & Dongjie Liu & Qi Cao & Junlan Chen, 2023. "How carpool drivers choose their passengers in Nanjing, China: effects of facial attractiveness and credit," Transportation, Springer, vol. 50(3), pages 929-958, June.
    12. Susan Shaheen & Nelson Chan & Helen Micheaux, 2015. "One-way carsharing’s evolution and operator perspectives from the Americas," Transportation, Springer, vol. 42(3), pages 519-536, May.
    13. Diana, Marco & Chicco, Andrea, 2022. "The spatial reconfiguration of parking demand due to car sharing diffusion: a simulated scenario for the cities of Milan and Turin (Italy)," Journal of Transport Geography, Elsevier, vol. 98(C).
    14. Irfan Ullah & Kai Liu & Tran Vanduy, 2019. "Examining Travelers’ Acceptance towards Car Sharing Systems—Peshawar City, Pakistan," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    15. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    16. Yi, Xu & Lian, Feng & Yang, Zhongzhen, 2022. "Research on commuters’ carpooling behavior in the mobile internet context," Transport Policy, Elsevier, vol. 126(C), pages 14-25.
    17. Junhee Kang & Keeyeon Hwang & Sungjin Park, 2016. "Finding Factors that Influence Carsharing Usage: Case Study in Seoul," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
    18. Cantelmo, Guido & Amini, Roja Ezzati & Monteiro, Mayara Moraes & Frenkel, Amnon & Lerner, Ofer & Tavory, Sharon Shoshany & Galtzur, Ayelet & Kamargianni, Maria & Shiftan, Yoram & Behrischi, Christiane, 2022. "Aligning users’ and stakeholders’ needs: How incentives can reshape the carsharing market," Transport Policy, Elsevier, vol. 126(C), pages 306-326.
    19. Shaheen, Susan A PhD & Cohen, Adam P, 2012. "Carsharing and Personal Vehicle Services: Worldwide Market Developments and Emerging Trends," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7fh4w0q5, Institute of Transportation Studies, UC Berkeley.
    20. Prateek Bansal & Akanksha Sinha & Rubal Dua & Ricardo Daziano, 2019. "Eliciting Preferences of Ridehailing Users and Drivers: Evidence from the United States," Papers 1904.06695, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3214-:d:184046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.