IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544220328371.html
   My bibliography  Save this article

Energy efficiency in leading emerging and developed countries

Author

Listed:
  • Popkova, Elena G.
  • Sergi, Bruno S.

Abstract

This paper defines the diverging interests of multiple actors in typically achieving and advancing energy efficiency. Gaps in the literature include the short elaboration of energy efficiency factors and conditions and the lack of information about developed and developing countries and thorough consideration of their specific features, impeding the development and implementation of detailed energy efficiency management strategies. It is against this backdrop that this paper seeks to identify the essence of energy efficiency and developing specific recommendations for achieving the most beneficial effect and well-balanced energy efficiency on the global scale, within the achievements of international goals in sustainable development. The paper exposes the critical factors of energy efficiency, accurately models the best energy efficiency characteristics, and settles the best energy consumption structure. The methodological purpose is to find different energy efficiency scenarios and disentangle fundamental differences in energy efficiency in developed and developing countries. The paper indicates that the reasonable likelihood of noteworthy achievement results in energy efficiency with insignificant mid-term changes. We give recommendations about well-balanced energy efficiency on the global scale and global progress in sustainable development.

Suggested Citation

  • Popkova, Elena G. & Sergi, Bruno S., 2021. "Energy efficiency in leading emerging and developed countries," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544220328371
    DOI: 10.1016/j.energy.2020.119730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220328371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elena G. Popkova & Lilia Poluyufta & Yulia Beshanova & Larisa V. Popova & Elena Kolesnikova, 2017. "Innovations as a Basis for Marketing Strategies of Russian Oil Companies in the Conditions of Oil Prices Reduction," Contributions to Economics, in: Elena G. Popkova (ed.), Overcoming Uncertainty of Institutional Environment as a Tool of Global Crisis Management, pages 449-455, Springer.
    2. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    3. Wang, Zhaoxia & Zhu, Han & Ding, Yan & Zhu, Tianli & Zhu, Neng & Tian, Zhe, 2018. "Energy efficiency evaluation of key energy consumption sectors in China based on a macro-evaluating system," Energy, Elsevier, vol. 153(C), pages 65-79.
    4. Borozan, Djula, 2018. "Technical and total factor energy efficiency of European regions: A two-stage approach," Energy, Elsevier, vol. 152(C), pages 521-532.
    5. Roth, Jonathan & Rajagopal, Ram, 2018. "Benchmarking building energy efficiency using quantile regression," Energy, Elsevier, vol. 152(C), pages 866-876.
    6. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    7. Wang, H. & Pan, Chen & Wang, Qunwei & Zhou, P., 2020. "Assessing sustainability performance of global supply chains: An input-output modeling approach," European Journal of Operational Research, Elsevier, vol. 285(1), pages 393-404.
    8. Lee, Seong Kon & Mogi, Gento, 2018. "Relative efficiency of energy technologies in the Korean mid-term strategic energy technology development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 472-482.
    9. E. Adinyira & T. E. Kwofie & F. Quarcoo, 2018. "Stakeholder requirements for building energy efficiency in mass housing delivery: the House of Quality approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1115-1131, June.
    10. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    11. Liu, Yazhou & Bian, Jiacong & Li, Xiangmei & Liu, Shuyi & Lageson, David & Yin, Yingkai, 2020. "The optimization of regional industrial structure under the water-energy constraint: A case study on Hebei Province in China," Energy Policy, Elsevier, vol. 143(C).
    12. Lihtmaa, Lauri & Hess, Daniel Baldwin & Leetmaa, Kadri, 2018. "Intersection of the global climate agenda with regional development: Unequal distribution of energy efficiency-based renovation subsidies for apartment buildings," Energy Policy, Elsevier, vol. 119(C), pages 327-338.
    13. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    14. de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.
    15. Zhu, Junming & Niu, Limin & Ruth, Matthias & Shi, Lei, 2018. "Technological Change and Energy Efficiency in Large Chinese Firms," Ecological Economics, Elsevier, vol. 150(C), pages 241-250.
    16. Rosa, Luiz Pinguelli & Tolmasquim, Mauricio Tiomno, 1993. "An analytical model to compare energy-efficiency indices and CO2 emissions in developed and developing countries," Energy Policy, Elsevier, vol. 21(3), pages 276-283, March.
    17. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadia Yusuf & Miltiadis D. Lytras, 2023. "Competitive Sustainability of Saudi Companies through Digitalization and the Circular Carbon Economy Model: A Bold Contribution to the Vision 2030 Agenda in Saudi Arabia," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    2. Zhou, Sheng & Xu, Zhiwei, 2022. "Energy efficiency assessment of RCEP member states: A three-stage slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 253(C).
    3. Jiangyuan Fu & Huidan Xue & Fayuan Wang & Liming Wang, 2023. "The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    4. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Agnieszka Mazur-Dudzińska, 2021. "The Situation of Households on the Energy Market in the European Union: Consumption, Prices, and Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-21, October.
    5. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
    6. Zhang, Junpeng & Pang, Deliang & Yang, Leijing & Ouyang, Wenjun, 2023. "Risk and synergy of multinational enterprise mergers and acquisitions under the background of the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 718-729.
    7. Claudia Durán & Ivan Derpich & Raúl Carrasco, 2022. "Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    8. Ying Li & Mi Zhou & Huaping Sun & Jia Liu, 2023. "Assessment of environmental tax and green bonds impacts on energy efficiency in the European Union," Economic Change and Restructuring, Springer, vol. 56(2), pages 1063-1081, April.
    9. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    10. Wang, Jianyou & Zhang, Wei & Yang, Tao & Yu, Yunzu & Liu, Chuang & Li, Bin, 2022. "Numerical and experimental investigation on heat transfer enhancement by adding fins on the pot in a domestic gas stove," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    2. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    3. Zhaoqiang Zhong & Benhong Peng & Ehsan Elahi, 2021. "Spatial and temporal pattern evolution and influencing factors of energy–environmental efficiency: A case study of Yangtze River urban agglomeration in China," Energy & Environment, , vol. 32(2), pages 242-261, March.
    4. Xu, Yue & Tian, Shu & Wang, Qingsong & Yuan, Xueliang & Ma, Qiao & Liu, Mengyue & Xu, Zhaopeng & Liu, Jixiang & Xu, Xiang & Liu, Chengqing, 2021. "Optimization path of energy-economy system from the perspective of minimum industrial structure adjustment," Energy, Elsevier, vol. 237(C).
    5. Agyarko, Kofi A. & Opoku, Richard & Van Buskirk, Robert, 2020. "Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana," Energy Policy, Elsevier, vol. 137(C).
    6. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    7. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    8. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    9. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    10. Jia Peng & Xianli Hu & Xinyue Fan & Kai Wang & Hao Gong, 2023. "The Impact of the Green Economy on Carbon Emission Intensity: Comparisons, Challenges, and Mitigating Strategies," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    11. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    12. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    13. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    14. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    16. Ren, Siyu & Hao, Yu & Wu, Haitao, 2022. "The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    17. Yuanying Chi & Wenbing Zhou & Songlin Tang & Yu Hu, 2022. "Driving Factors of CO 2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model," Energies, MDPI, vol. 15(7), pages 1-15, April.
    18. Zhong, Meirui & Huang, Gangli & He, Ruifang, 2022. "The technological innovation efficiency of China's lithium-ion battery listed enterprises: Evidence from a three-stage DEA model and micro-data," Energy, Elsevier, vol. 246(C).
    19. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    20. Yiming Zhuang & Meltem Denizel & Frank Montabon, 2023. "Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line," Sustainability, MDPI, vol. 15(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544220328371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.