IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp483-500.html
   My bibliography  Save this article

Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants

Author

Listed:
  • Luceño, José A.
  • Martín, Mariano

Abstract

This work presents a two-stage optimization procedure for the conceptual design and operation of A-frame dry cooling systems for concentrated solar power facilities. First, the optimal geometry of the A-frame including sizing, number of fans and blade geometry, and unit parameters such as pipe length, configuration and number is determined. Finally, the operation of the system over a year for minimum energy consumption is computed. The geometry problem is formulated as a mixed-integer non linear programming (MINLP) problem. A tailor-made branch and bound algorithm is used to solve the complex non-linear programming sub-problems. The second problem consists of a multi-period MINLP. A fixed geometry is used to evaluate the usage of fans over time. The solution suggests an apex angle of 63°, one row of 75 pipes of 13.5 m long with a diameter of 3.3 mm, and 4 fans are used but they only operate at full capacity during summer. This design allows reducing the energy required by 20% by using the appropriate pipe configuration and number. The unit consumes around 4% of the energy produced by the CSP plant that serves. It is a promising result that can be affected by plant layout and ground availability.

Suggested Citation

  • Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:483-500
    DOI: 10.1016/j.energy.2018.09.177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Butler, C. & Grimes, R., 2014. "The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant," Energy, Elsevier, vol. 68(C), pages 886-895.
    2. Blanco-Marigorta, Ana M. & Victoria Sanchez-Henríquez, M. & Peña-Quintana, Juan A., 2011. "Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant," Energy, Elsevier, vol. 36(4), pages 1966-1972.
    3. Dyreson, Ana & Miller, Franklin, 2016. "Night sky cooling for concentrating solar power plants," Applied Energy, Elsevier, vol. 180(C), pages 276-286.
    4. Manassaldi, Juan I. & Scenna, Nicolás J. & Mussati, Sergio F., 2014. "Optimization mathematical model for the detailed design of air cooled heat exchangers," Energy, Elsevier, vol. 64(C), pages 734-746.
    5. Yang, L.J. & Wang, M.H. & Du, X.Z. & Yang, Y.P., 2012. "Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant," Applied Energy, Elsevier, vol. 99(C), pages 402-413.
    6. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    7. Rosegrant, Mark W. & Cai, Ximing & Cline, Sarah A., 2002. "Global water outlook to 2025," Food policy reports 14, International Food Policy Research Institute (IFPRI).
    8. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2011. "Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant," Applied Energy, Elsevier, vol. 88(4), pages 1366-1376, April.
    9. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2021. "Location selection for waste-to-energy plants by using fuzzy linear programming," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lozano-Santamaria, Federico & Luceño, José A. & Martín, Mariano & Macchietto, Sandro, 2020. "Stochastic modelling of sandstorms affecting the optimal operation and cleaning scheduling of air coolers in concentrated solar power plants," Energy, Elsevier, vol. 213(C).
    2. Martín, Mariano, 2015. "Optimal annual operation of the dry cooling system of a concentrated solar energy plant in the south of Spain," Energy, Elsevier, vol. 84(C), pages 774-782.
    3. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    4. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    5. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    6. Martín, Mariano & Martín, Mónica, 2017. "Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers," Energy, Elsevier, vol. 135(C), pages 625-636.
    7. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    8. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    9. Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.
    10. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2014. "Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system," Applied Energy, Elsevier, vol. 115(C), pages 65-74.
    11. Faisal Asfand & Patricia Palenzuela & Lidia Roca & Adèle Caron & Charles-André Lemarié & Jon Gillard & Peter Turner & Kumar Patchigolla, 2020. "Thermodynamic Performance and Water Consumption of Hybrid Cooling System Configurations for Concentrated Solar Power Plants," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    12. Salgado, R. & Belmonte, J.F. & Almendros-Ibáñez, J.A. & Molina, A.E., 2017. "Integration of absorption refrigeration systems into Rankine power cycles to reduce water consumption: A thermodynamic analysis," Energy, Elsevier, vol. 119(C), pages 1084-1097.
    13. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    14. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    15. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    17. Benjamin Court & Thomas Elliot & Joseph Dammel & Thomas Buscheck & Jeremy Rohmer & Michael Celia, 2012. "Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO 2 sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 569-599, August.
    18. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    19. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    20. Zhang, Haitian & Feng, Xiao & Wang, Yufei, 2018. "Comparison and evaluation of air cooling and water cooling in resource consumption and economic performance," Energy, Elsevier, vol. 154(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:483-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.