IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp625-636.html
   My bibliography  Save this article

Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers

Author

Listed:
  • Martín, Mariano
  • Martín, Mónica

Abstract

In this work we evaluate the effect of weather and cooling towers location on its size and monthly operation by developing a multiperiod optimization formulation aiming at minimum water consumption. Coal based and CSP plants are considered. While the operation of both depends on the weather, CSP plants operation is also characterized by non steady production of energy that also depends on weather conditions. Furthermore, a CHEMCAD simulation is also put together to evaluate the limits in power production as a result of the cooling capabilities in different climates. The mathematical formulation shows that the driving force is limited in winter and that the extreme temperatures of summer reduce the production capacity of the plant due to limitations in the heat transfer capacity. Colder climates require larger towers but show lower water consumption. Hotter climates need additional heat transfer area. It comes a point when the efficiency of the Rankine cycle and, as a result, the power production must decrease by increasing the exhaust pressure of the low pressure turbine so as to be able to refrigerate the system.

Suggested Citation

  • Martín, Mariano & Martín, Mónica, 2017. "Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers," Energy, Elsevier, vol. 135(C), pages 625-636.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:625-636
    DOI: 10.1016/j.energy.2017.06.171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2011. "Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant," Applied Energy, Elsevier, vol. 88(4), pages 1366-1376, April.
    2. Salazar, Juan M. & Diwekar, Urmila & Constantinescu, Emil & Zavala, Victor M., 2013. "Stochastic optimization approach to water management in cooling-constrained power plants," Applied Energy, Elsevier, vol. 112(C), pages 12-22.
    3. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    4. Blanco-Marigorta, Ana M. & Victoria Sanchez-Henríquez, M. & Peña-Quintana, Juan A., 2011. "Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant," Energy, Elsevier, vol. 36(4), pages 1966-1972.
    5. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerras, Lidia S. & Martín, Mariano, 2019. "Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain," Energy, Elsevier, vol. 169(C), pages 739-749.
    2. García-Anteportalatina, Víctor Manuel & Martín, Mariano, 2022. "Process synthesis for the valorisation of low-grade heat: Geothermal brines and industrial waste streams," Renewable Energy, Elsevier, vol. 198(C), pages 733-748.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lozano-Santamaria, Federico & Luceño, José A. & Martín, Mariano & Macchietto, Sandro, 2020. "Stochastic modelling of sandstorms affecting the optimal operation and cleaning scheduling of air coolers in concentrated solar power plants," Energy, Elsevier, vol. 213(C).
    2. Martín, Mariano, 2015. "Optimal annual operation of the dry cooling system of a concentrated solar energy plant in the south of Spain," Energy, Elsevier, vol. 84(C), pages 774-782.
    3. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
    4. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2014. "Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system," Applied Energy, Elsevier, vol. 115(C), pages 65-74.
    5. Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
    6. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    7. Faisal Asfand & Patricia Palenzuela & Lidia Roca & Adèle Caron & Charles-André Lemarié & Jon Gillard & Peter Turner & Kumar Patchigolla, 2020. "Thermodynamic Performance and Water Consumption of Hybrid Cooling System Configurations for Concentrated Solar Power Plants," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    8. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    9. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    10. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    11. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    12. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    13. Moore, J. & Grimes, R. & Walsh, E. & O'Donovan, A., 2014. "Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser," Energy, Elsevier, vol. 69(C), pages 378-391.
    14. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    15. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    16. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    18. Palenzuela, Patricia & Roca, Lidia & Asfand, Faisal & Patchigolla, Kumar, 2022. "Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants," Energy, Elsevier, vol. 242(C).
    19. de la Calle, Alberto & Bayon, Alicia & Soo Too, Yen Chean, 2018. "Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions," Energy, Elsevier, vol. 153(C), pages 1016-1027.
    20. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pierobon, Leonardo & Kærn, Martin R. & Haglind, Fredrik & Greig, Alistair, 2017. "Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region," Energy, Elsevier, vol. 141(C), pages 975-990.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:625-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.