IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017357.html
   My bibliography  Save this article

Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems

Author

Listed:
  • Zhang, Yi
  • Liu, Jinfeng
  • Yang, Tingting
  • Liu, Jianbang
  • Shen, Jiong
  • Fang, Fang

Abstract

Direct air-cooling is considered as a promising technique in power generation because of its huge water-saving advantages. However, this is accompanied by inherent sensitivity to meteorological and ambient conditions, which is liable to cause frequent detrimental fluctuations in the condenser pressure and unit operation stability/economy. Therefore, a higher requirement has been imposed on the control system to achieve stable and economic operation of direct air-cooling condenser. To this end, a dynamic direct air-cooling condenser pressure model is first established in this paper after taking fully consideration of both condenser dynamics and couplings with adjacent systems. Then, two control methods, namely zone model predictive control and zone economic model predictive control are applied to the established model to realize zone control of the condenser pressure while suppressing control quantity variations resulting from time-varying ambient temperature. Detailed quantitative analysis of the influence of direct air-cooling condenser pressure on the turbine bleed flow and unit economy has been performed after both model steady-state and dynamic verification, and the comparative control simulation results under two typical cases have illustrated that the proposed zone economic model predictive controller provides a flexible way to simultaneously deal with the ambient temperature changes and economic optimization issues.

Suggested Citation

  • Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017357
    DOI: 10.1016/j.energy.2021.121487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    2. Butler, C. & Grimes, R., 2014. "The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant," Energy, Elsevier, vol. 68(C), pages 886-895.
    3. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    4. Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.
    5. Liu, Lihua & Du, Xiaoze & Xi, Xinming & Yang, Lijun & Yang, Yongping, 2013. "Experimental analysis of parameter influences on the performances of direct air cooled power generating unit," Energy, Elsevier, vol. 56(C), pages 117-123.
    6. Yang, L.J. & Wang, M.H. & Du, X.Z. & Yang, Y.P., 2012. "Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant," Applied Energy, Elsevier, vol. 99(C), pages 402-413.
    7. Wu, Xiao & Shen, Jiong & Wang, Meihong & Lee, Kwang Y., 2020. "Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization," Energy, Elsevier, vol. 196(C).
    8. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    2. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
    3. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    4. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    5. Basu, M., 2022. "Fuel constrained combined heat and power dynamic dispatch using horse herd optimization algorithm," Energy, Elsevier, vol. 246(C).
    6. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    7. Zhiling Luo & Qi Yao, 2022. "Multi-Model-Based Predictive Control for Divisional Regulation in the Direct Air-Cooling Condenser," Energies, MDPI, vol. 15(13), pages 1-18, June.
    8. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    9. Butler, C. & Grimes, R., 2014. "The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant," Energy, Elsevier, vol. 68(C), pages 886-895.
    10. Wei Yuan & Fengzhong Sun & Yuanbin Zhao & Xuehong Chen & Ying Li & Xiaolei Lyu, 2020. "Numerical Study on the Influence Mechanism of Crosswind on Frozen Phenomena in a Direct Air-Cooled System," Energies, MDPI, vol. 13(15), pages 1-18, July.
    11. Akinola, Toluleke E. & Oko, Eni & Wu, Xiao & Ma, Keming & Wang, Meihong, 2020. "Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process," Energy, Elsevier, vol. 213(C).
    12. Tang, Zihan & Wu, Xiao, 2023. "Distributed predictive control guided by intelligent reboiler steam feedforward for the coordinated operation of power plant-carbon capture system," Energy, Elsevier, vol. 267(C).
    13. Lu, Nianci & Pan, Lei & Liu, Zhenxiang & Song, Yajun & Si, Paiyou, 2021. "Flexible operation control strategy for thermos-exchanger water level of two-by-one combined cycle gas turbine based on heat network storage utilization," Energy, Elsevier, vol. 232(C).
    14. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    15. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    16. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    17. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    18. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    19. Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
    20. Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.