IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp621-629.html
   My bibliography  Save this article

Effects on the U.S. economy of its proposed withdrawal from the Paris Agreement: A quantitative assessment

Author

Listed:
  • Nong, Duy
  • Siriwardana, Mahinda

Abstract

This paper assesses the potential effects on the U.S. economy if the U.S. retreats from its pledge to reduce greenhouse gas emissions agreed under the Paris Agreement. We assume prior to withdrawal that the U.S. and other nations or regions would introduce climate change policies, such as emissions trading schemes, to meet their emission targets which were agreed in Paris. When the U.S. withdraws from the Paris Agreement, it will not adopt such a policy. We use a modified version of the GTAP-E model to examine the effects on the U.S. economy of its anti-mitigation action in a counterfactual framework. The findings suggest that a retreat from the Paris Agreement would increase the real GDP and real private consumption by 1.13% and 0.78%, respectively, in the U.S. Given such improvements at the macro level, the effects on the U.S. energy sectors from the withdrawal are substantial. Prices of energy would reduce considerably, particularly for coal, natural gas, and consequently the price of electricity (−17.8%). These three energy sectors would also experience considerable expansions when the U.S. withdraws from the Paris Agreement compared to its position if it honored its previously pledged committed targets.

Suggested Citation

  • Nong, Duy & Siriwardana, Mahinda, 2018. "Effects on the U.S. economy of its proposed withdrawal from the Paris Agreement: A quantitative assessment," Energy, Elsevier, vol. 159(C), pages 621-629.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:621-629
    DOI: 10.1016/j.energy.2018.06.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831243X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Yongrok & Liu, Yu & Lee, Hyoungseok, 2017. "The economy impacts of Korean ETS with an emphasis on sectoral coverage based on a CGE approach," Energy Policy, Elsevier, vol. 109(C), pages 835-844.
    2. Golub, Alla, 2013. "Analysis of Climate Policies with GDyn-E," Technical Papers 283431, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Philip D. Adams & Brian R. Parmenter & George Verikios, 2014. "An Emissions Trading Scheme for Australia: National and Regional Impacts," The Economic Record, The Economic Society of Australia, vol. 90(290), pages 316-344, September.
    4. Carolyn Fischer & Alan K. Fox, 2007. "Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions," Land Economics, University of Wisconsin Press, vol. 83(4), pages 575-599.
    5. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
    8. Duy Nong & Mahinda Siriwardana, 2017. "Environmental and economic impacts of a joint emissions trading scheme," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(3/4), pages 184-206.
    9. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    10. Zhang, Xu & Qi, Tian-yu & Ou, Xun-min & Zhang, Xi-liang, 2017. "The role of multi-region integrated emissions trading scheme: A computable general equilibrium analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1860-1868.
    11. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    12. Jovanović, Marina & Afgan, Naim & Radovanović, Predrag & Stevanović, Vladimir, 2009. "Sustainable development of the Belgrade energy system," Energy, Elsevier, vol. 34(5), pages 532-539.
    13. Philip D. Adams, 2007. "Insurance against Catastrophic Climate Change: How Much Will an Emissions Trading Scheme Cost Australia?," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 40(4), pages 432-452, December.
    14. Hillberry, Russell & Hummels, David, 2013. "Trade Elasticity Parameters for a Computable General Equilibrium Model," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1213-1269, Elsevier.
    15. Malina, Robert & McConnachie, Dominic & Winchester, Niven & Wollersheim, Christoph & Paltsev, Sergey & Waitz, Ian A., 2012. "The impact of the European Union Emissions Trading Scheme on US aviation," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 36-41.
    16. Nong, Duy & Siriwardana, Mahinda, 2017. "Australia’s Emissions Reduction Fund in an international context," Economic Analysis and Policy, Elsevier, vol. 54(C), pages 123-134.
    17. Nong, Duy & Meng, Sam & Siriwardana, Mahinda, 2017. "An assessment of a proposed ETS in Australia by using the MONASH-Green model," Energy Policy, Elsevier, vol. 108(C), pages 281-291.
    18. Qi, Tianyu & Weng, Yuyan, 2016. "Economic impacts of an international carbon market in achieving the INDC targets," Energy, Elsevier, vol. 109(C), pages 886-893.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Optimal coalition splitting with heterogenous strategies," Working Papers halshs-03770401, HAL.
    2. Jung, Hail & Lee, Junyoup & Song, Chang-Keun, 2023. "Carbon productivity and volatility," Finance Research Letters, Elsevier, vol. 56(C).
    3. Yunfeng Shang & Yuanjie Pu & Yiting Yu & Nan Gao & Yun Lu, 2023. "Role of the e-exhibition industry in the green growth of businesses and recovery," Economic Change and Restructuring, Springer, vol. 56(3), pages 2003-2020, June.
    4. Nong, Duy, 2018. "General equilibrium economy-wide impacts of the increased energy taxes in Vietnam," Energy Policy, Elsevier, vol. 123(C), pages 471-481.
    5. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Why and when coalitions split? An alternative analytical approach with an application to environmental agreements," Working Papers halshs-03676670, HAL.
    6. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    7. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    8. Alessi, Lucia & Elisa, Ossola & Panzica, Roberto, 2021. "When do investors go green? Evidence from a time-varying asset-pricing model," Working Papers 2021-13, Joint Research Centre, European Commission.
    9. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    10. George Vasconcelos Goes & Daniel Neves Schmitz Gonçalves & Márcio Almeida D’Agosto & Emilio Lèbre Rovere & Renata Albergaria Mello Bandeira, 2020. "MRV framework and prospective scenarios to monitor and ratchet up Brazilian transport mitigation targets," Climatic Change, Springer, vol. 162(4), pages 2197-2217, October.
    11. Mario Larch & Joschka Wanner, 2019. "The Consequences of Unilateral Withdrawals from the Paris Agreement," CESifo Working Paper Series 7804, CESifo.
    12. Nong, Duy, 2019. "Potential economic impacts of global wild catch fishery decline in Southeast Asia and South America," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 213-226.
    13. Nguyen, Phuong Anh & Abbott, Malcolm & Nguyen, Thanh Loan T., 2019. "The development and cost of renewable energy resources in Vietnam," Utilities Policy, Elsevier, vol. 57(C), pages 59-66.
    14. Okorie, David Iheke & Wesseh, Presley K., 2023. "Climate agreements and carbon intensity: Towards increased production efficiency and technical progress?," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 300-313.
    15. Oleg Smirnov, 2019. "Collective risk social dilemma and the consequences of the US withdrawal from international climate negotiations," Journal of Theoretical Politics, , vol. 31(4), pages 660-676, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nong, Duy & Siriwardana, Mahinda, 2018. "Potential impacts of the Emissions Reduction Fund on the Australian economy," Energy Economics, Elsevier, vol. 74(C), pages 387-398.
    2. Nong, Duy & Nguyen, Trung H. & Wang, Can & Van Khuc, Quy, 2020. "The environmental and economic impact of the emissions trading scheme (ETS) in Vietnam," Energy Policy, Elsevier, vol. 140(C).
    3. Nong, Duy & Meng, Sam & Siriwardana, Mahinda, 2017. "An assessment of a proposed ETS in Australia by using the MONASH-Green model," Energy Policy, Elsevier, vol. 108(C), pages 281-291.
    4. Nong, Duy, 2018. "General equilibrium economy-wide impacts of the increased energy taxes in Vietnam," Energy Policy, Elsevier, vol. 123(C), pages 471-481.
    5. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    6. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    7. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2015. "The sensitivity of climate-economy CGE models to energy-related elasticity parameters: Implications for climate policy design," Economic Modelling, Elsevier, vol. 51(C), pages 38-52.
    8. Alessandro Antimiani & Valeria Costantini & Elena Paglialunga, 2015. "An analysis of the sensitivity of a dynamic climate-economy CGE model (GDynE) to empirically estimated energy-related elasticity parameters," SEEDS Working Papers 0515, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2015.
    9. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    10. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    11. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    12. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    13. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    14. Lin, Boqiang & Jia, Zhijie, 2018. "Impact of quota decline scheme of emission trading in China: A dynamic recursive CGE model," Energy, Elsevier, vol. 149(C), pages 190-203.
    15. Markandya, A. & Antimiani, A. & Costantini, V. & Martini, C. & Palma, A. & Tommasino, M.C., 2015. "Analyzing Trade-offs in International Climate Policy Options: The Case of the Green Climate Fund," World Development, Elsevier, vol. 74(C), pages 93-107.
    16. Birur, Dileep & Lal, Pankaj & Levin, Todd & Zhou, Zhi & Wolde, Bernabas & Wieczerak, Taylor & Thimmapuram, Prakash, 2022. "Fostering Green Economy in New Jersey under the aegis of Regional Greenhouse Gas Initiative," Conference papers 333434, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Jingzhi Zhu & Yuhuan Zhao & Lu Zheng, 2024. "The Impact of the EU Carbon Border Adjustment Mechanism on China’s Exports to the EU," Energies, MDPI, vol. 17(2), pages 1-18, January.
    18. Zhaojun Wang & Duy Nong & Amanda M. Countryman & James J. Corbett & Travis Warziniack, 2020. "Potential impacts of ballast water regulations on international trade, shipping patterns, and the global economy: An integrated transportation and economic modeling assessment," Papers 2008.11334, arXiv.org.
    19. Nong, Duy, 2020. "Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa," Energy Policy, Elsevier, vol. 140(C).
    20. Jessica A. Bohlmann & Heinrich R. Bohlmann & Roula Inglesi-Lotz, 2015. "An Economy-Wide Evaluation of New Power Generation in South Africa: The Case of Kusile and Medupi," Working Papers 201540, University of Pretoria, Department of Economics.

    More about this item

    Keywords

    Paris agreement; Energy sectors; GTAP-E; U.S. economy; Emissions trading schemes;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • D60 - Microeconomics - - Welfare Economics - - - General
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:621-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.