IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp592-609.html
   My bibliography  Save this article

Modelling smart energy systems in tropical regions

Author

Listed:
  • Dominković, D.F.
  • Dobravec, V.
  • Jiang, Y.
  • Nielsen, P.S.
  • Krajačić, G.

Abstract

A large majority of energy systems models of smart urban energy systems are modelling moderate climate with seasonal variations, such as the European ones. The climate in the tropical region is dominated by very high stable temperatures and high humidity and lacks the moderate climate's seasonality. Furthermore, the smart energy system models tend to focus on CO2 emissions only and lack integrated air pollution modelling of other air pollutants. In this study, an integrated urban energy system for a tropical climate was modelled, including modelling the interactions between power, cooling, gas, mobility and water desalination sectors. Five different large scale storages were modelled, too. The developed linear optimization model further included endogenous decisions about the share of district versus individual cooling, implementation of energy efficiency solutions and implementation of demand response measures in buildings and industry. Six scenarios for the year 2030 were developed in order to present a stepwise increase in energy system integration in a transition to a smart urban energy system in Singapore. The economically best performing scenario had 48% lower socio-economic costs, 68% lower CO2e emissions, 15% higher particulate matter emissions and 2% larger primary energy consumption compared to a business-as-usual case.

Suggested Citation

  • Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:592-609
    DOI: 10.1016/j.energy.2018.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    2. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    3. De Luca, G. & Fabozzi, S. & Massarotti, N. & Vanoli, L., 2018. "A renewable energy system for a nearly zero greenhouse city: Case study of a small city in southern Italy," Energy, Elsevier, vol. 143(C), pages 347-362.
    4. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    5. Quah, Euston & Boon, Tay Liam, 2003. "The economic cost of particulate air pollution on health in Singapore," Journal of Asian Economics, Elsevier, vol. 14(1), pages 73-90, February.
    6. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    7. Dominković, D.F. & Bačeković, I. & Pedersen, A.S. & Krajačić, G., 2018. "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1823-1838.
    8. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    9. Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
    10. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    11. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    12. Lott, Melissa C. & Pye, Steve & Dodds, Paul E., 2017. "Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom," Energy Policy, Elsevier, vol. 101(C), pages 42-51.
    13. Tomić, Tihomir & Dominković, Dominik Franjo & Pfeifer, Antun & Schneider, Daniel Rolph & Pedersen, Allan Schrøder & Duić, Neven, 2017. "Waste to energy plant operation under the influence of market and legislation conditioned changes," Energy, Elsevier, vol. 137(C), pages 1119-1129.
    14. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    15. Hansen, Kenneth & Connolly, David & Lund, Henrik & Drysdale, David & Thellufsen, Jakob Zinck, 2016. "Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat," Energy, Elsevier, vol. 115(P3), pages 1663-1671.
    16. An, Jingjing & Yan, Da & Hong, Tianzhen & Sun, Kaiyu, 2017. "A novel stochastic modeling method to simulate cooling loads in residential districts," Applied Energy, Elsevier, vol. 206(C), pages 134-149.
    17. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    18. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin Marian, 2021. "European union's regions between cohesion and sustainability," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Mimica, Marko & Dominković, Dominik F. & Kirinčić, Vedran & Krajačić, Goran, 2022. "Soft-linking of improved spatiotemporal capacity expansion model with a power flow analysis for increased integration of renewable energy sources into interconnected archipelago," Applied Energy, Elsevier, vol. 305(C).
    4. Jalil-Vega, Francisca & García Kerdan, Iván & Hawkes, Adam D., 2020. "Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities," Applied Energy, Elsevier, vol. 262(C).
    5. Andiappan, Viknesh, 2022. "Optimization of smart energy systems based on response time and energy storage losses," Energy, Elsevier, vol. 258(C).
    6. Dominković, Dominik Franjo & Stunjek, Goran & Blanco, Ignacio & Madsen, Henrik & Krajačić, Goran, 2020. "Technical, economic and environmental optimization of district heating expansion in an urban agglomeration," Energy, Elsevier, vol. 197(C).
    7. Dominković, Dominik Franjo & Junker, Rune Grønborg & Lindberg, Karen Byskov & Madsen, Henrik, 2020. "Implementing flexibility into energy planning models: Soft-linking of a high-level energy planning model and a short-term operational model," Applied Energy, Elsevier, vol. 260(C).
    8. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    9. Girolama Airò Farulla & Giovanni Tumminia & Francesco Sergi & Davide Aloisio & Maurizio Cellura & Vincenzo Antonucci & Marco Ferraro, 2021. "A Review of Key Performance Indicators for Building Flexibility Quantification to Support the Clean Energy Transition," Energies, MDPI, vol. 14(18), pages 1-19, September.
    10. Antonija Ana Wieser & Marco Scherz & Alexander Passer & Helmuth Kreiner, 2021. "Challenges of a Healthy Built Environment: Air Pollution in Construction Industry," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    11. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    12. Lisbona, Pilar & Frate, Guido Francesco & Bailera, Manuel & Desideri, Umberto, 2018. "Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective," Energy, Elsevier, vol. 159(C), pages 656-668.
    13. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    15. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
    16. Dominik Franjo Dominković & Goran Krajačić, 2019. "District Cooling Versus Individual Cooling in Urban Energy Systems: The Impact of District Energy Share in Cities on the Optimal Storage Sizing," Energies, MDPI, vol. 12(3), pages 1-21, January.
    17. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    19. Behzadi, Amirmohammad & Arabkoohsar, Ahmad, 2020. "Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit," Energy, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    3. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    6. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    7. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    10. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    11. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    12. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
    13. Mimica, Marko & Dominković, Dominik F. & Kirinčić, Vedran & Krajačić, Goran, 2022. "Soft-linking of improved spatiotemporal capacity expansion model with a power flow analysis for increased integration of renewable energy sources into interconnected archipelago," Applied Energy, Elsevier, vol. 305(C).
    14. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    15. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    17. Dominković, Dominik Franjo & Stunjek, Goran & Blanco, Ignacio & Madsen, Henrik & Krajačić, Goran, 2020. "Technical, economic and environmental optimization of district heating expansion in an urban agglomeration," Energy, Elsevier, vol. 197(C).
    18. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Cristiani, Laura & de Santoli, Livio, 2022. "Rising targets to 55% GHG emissions reduction – The smart energy systems approach for improving the Italian energy strategy," Energy, Elsevier, vol. 259(C).
    19. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Dominković, Dominik Franjo & Wahlroos, Mikko & Syri, Sanna & Pedersen, Allan Schrøder, 2018. "Influence of different technologies on dynamic pricing in district heating systems: Comparative case studies," Energy, Elsevier, vol. 153(C), pages 136-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:592-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.