IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v143y2018icp424-438.html
   My bibliography  Save this article

A real-time demand response market through a repeated incomplete-information game

Author

Listed:
  • Motalleb, Mahdi
  • Annaswamy, Anuradha
  • Ghorbani, Reza

Abstract

Demand Response (DR) programs have been developed to help traditional power market to meet demand specially with increasing penetrations of renewable energies. This paper focuses on application of a game-theoretic framework to model competition between demand response aggregators to sell aggregated energy stored in storage devices directly to other aggregators in a market. This proposed market is cleared in each time interval of a day using a repeated game-theoretic framework. After finding optimal bidding strategies of the aggregators in each time interval, Dynamic Economic Dispatch (DED) is performed to update the dispatch of generators based on updated demand. Dynamic pricing has been considered in the proposed market framework in two forms: Real-Time Pricing (RTP) in each time interval of a day with updating demand and supply and Time-of-Use (TOU) with demand price-based scheduling through dynamic programing. The proposed method minimizes the fuel consumption and operation costs and optimally schedules the generation in grid's supply side. It also presents optimal prices during different periods simultaneously. Customers in light of the utility's optimal price minimize theirs electricity costs and optimally schedule their power consumption in order to participate in the DR market. The presented model is applied to IEEE 24-bus model.

Suggested Citation

  • Motalleb, Mahdi & Annaswamy, Anuradha & Ghorbani, Reza, 2018. "A real-time demand response market through a repeated incomplete-information game," Energy, Elsevier, vol. 143(C), pages 424-438.
  • Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:424-438
    DOI: 10.1016/j.energy.2017.10.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217318340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fotouhi Ghazvini, Mohammad Ali & Canizes, Bruno & Vale, Zita & Morais, Hugo, 2013. "Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market," Applied Energy, Elsevier, vol. 101(C), pages 667-677.
    2. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    3. Liu, Zhen & Zhang, Xiliang & Lieu, Jenny, 2010. "Design of the incentive mechanism in electricity auction market based on the signaling game theory," Energy, Elsevier, vol. 35(4), pages 1813-1819.
    4. Lo Prete, Chiara & Hobbs, Benjamin F., 2016. "A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets," Applied Energy, Elsevier, vol. 169(C), pages 524-541.
    5. Yu, Mengmeng & Hong, Seung Ho, 2016. "Supply–demand balancing for power management in smart grid: A Stackelberg game approach," Applied Energy, Elsevier, vol. 164(C), pages 702-710.
    6. Chassin, David P. & Rondeau, Daniel, 2016. "Aggregate modeling of fast-acting demand response and control under real-time pricing," Applied Energy, Elsevier, vol. 181(C), pages 288-298.
    7. Kamalinia, Saeed & Shahidehpour, Mohammad & Wu, Lei, 2014. "Sustainable resource planning in energy markets," Applied Energy, Elsevier, vol. 133(C), pages 112-120.
    8. Wang, Jianhui & Zhou, Zhi & Botterud, Audun, 2011. "An evolutionary game approach to analyzing bidding strategies in electricity markets with elastic demand," Energy, Elsevier, vol. 36(5), pages 3459-3467.
    9. Wan, Rui & Boyce, John R., 2014. "Non-renewable resource Stackelberg games," Resource and Energy Economics, Elsevier, vol. 37(C), pages 102-121.
    10. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    11. Lorenczik, Stefan & Panke, Timo, 2016. "Assessing market structures in resource markets — An empirical analysis of the market for metallurgical coal using various equilibrium models," Energy Economics, Elsevier, vol. 59(C), pages 179-187.
    12. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    13. Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
    14. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    15. Min, C.G. & Kim, M.K. & Park, J.K. & Yoon, Y.T., 2013. "Game-theory-based generation maintenance scheduling in electricity markets," Energy, Elsevier, vol. 55(C), pages 310-318.
    16. Reihani, Ehsan & Motalleb, Mahdi & Ghorbani, Reza & Saad Saoud, Lyes, 2016. "Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1372-1379.
    17. Zhang, Ni & Yan, Yu & Su, Wencong, 2015. "A game-theoretic economic operation of residential distribution system with high participation of distributed electricity prosumers," Applied Energy, Elsevier, vol. 154(C), pages 471-479.
    18. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    19. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    2. Bhatti, Bilal Ahmad & Broadwater, Robert, 2020. "Distributed Nash Equilibrium Seeking for a Dynamic Micro-grid Energy Trading Game with Non-quadratic Payoffs," Energy, Elsevier, vol. 202(C).
    3. Motalleb, Mahdi & Siano, Pierluigi & Ghorbani, Reza, 2019. "Networked Stackelberg Competition in a Demand Response Market," Applied Energy, Elsevier, vol. 239(C), pages 680-691.
    4. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    5. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    6. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    7. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    8. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    10. Leenders, Ludger & Bahl, Björn & Hennen, Maike & Bardow, André, 2019. "Coordinating scheduling of production and utility system using a Stackelberg game," Energy, Elsevier, vol. 175(C), pages 1283-1295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    2. Motalleb, Mahdi & Siano, Pierluigi & Ghorbani, Reza, 2019. "Networked Stackelberg Competition in a Demand Response Market," Applied Energy, Elsevier, vol. 239(C), pages 680-691.
    3. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    4. Acuña, Luceny Guzmán & Ríos, Diana Ramírez & Arboleda, Carlos Paternina & Ponzón, Esneyder González, 2018. "Cooperation model in the electricity energy market using bi-level optimization and Shapley value," Operations Research Perspectives, Elsevier, vol. 5(C), pages 161-168.
    5. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    6. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    7. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    8. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    9. Aviad Navon & Gefen Ben Yosef & Ram Machlev & Shmuel Shapira & Nilanjan Roy Chowdhury & Juri Belikov & Ariel Orda & Yoash Levron, 2020. "Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review," Energies, MDPI, vol. 13(15), pages 1-35, August.
    10. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Lu, Tianguang & Ai, Qian & Wang, Zhaoyu, 2018. "Interactive game vector: A stochastic operation-based pricing mechanism for smart energy systems with coupled-microgrids," Applied Energy, Elsevier, vol. 212(C), pages 1462-1475.
    12. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    15. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    16. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    17. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    18. Huiru Zhao & Yuwei Wang & Mingrui Zhao & Qingkun Tan & Sen Guo, 2017. "Day-Ahead Market Modeling for Strategic Wind Power Producers under Robust Market Clearing," Energies, MDPI, vol. 10(7), pages 1-27, July.
    19. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    20. Bhatti, Bilal Ahmad & Broadwater, Robert, 2020. "Distributed Nash Equilibrium Seeking for a Dynamic Micro-grid Energy Trading Game with Non-quadratic Payoffs," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:424-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.