IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2613-2627.html
   My bibliography  Save this article

Future demand for energy services through a quantitative approach of lifestyles

Author

Listed:
  • Le Gallic, Thomas
  • Assoumou, Edi
  • Maïzi, Nadia

Abstract

Among the tools and processes that are used to inform decisions makers on the long-term challenges raised by energy transition, numerical models are at the forefront. Whether led at the global, continental, country or local level, they help projecting the future operational conditions of our energy systems. However the possibility of addressing the sustainability challenge by changes in our lifestyles rather than technical solutions often remains outside the scope of such models whereas lifestyles contain a set of key determinants of mobility, housing, spatial planning or the organization terms of the productive sectors (industry, agriculture, services). Energy is not consumed for itself and understanding how the future demand of energy services could be framed is an important issue. This paper makes proposals to improve the consideration of lifestyles in the quantitative foresight exercises. Our methodology includes the development of a statistical model of the dynamic of changes in lifestyle patterns to derive energy service demands. The use of this model provides a more coherent framework for the formulation of lifestyle change scenarios. A set of three lifestyles anticipated for France are then designed and discussed up to 2072.

Suggested Citation

  • Le Gallic, Thomas & Assoumou, Edi & Maïzi, Nadia, 2017. "Future demand for energy services through a quantitative approach of lifestyles," Energy, Elsevier, vol. 141(C), pages 2613-2627.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2613-2627
    DOI: 10.1016/j.energy.2017.07.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Bernard & Marie de Lattre-Gasquet & Sandrine Mathy & Jean-Eudes Moncomble & Julie Rozenberg, 2014. "Prospective énergétique : Le possible, le souhaitable et l’acceptable," Post-Print halshs-01285644, HAL.
    2. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    3. Weber, Christoph & Perrels, Adriaan, 2000. "Modelling lifestyle effects on energy demand and related emissions," Energy Policy, Elsevier, vol. 28(8), pages 549-566, July.
    4. Nakagami, Hidetoshi, 1996. "Lifestyle change and energy use in Japan: Household equipment and energy consumption," Energy, Elsevier, vol. 21(12), pages 1157-1167.
    5. Charpentier, J.-P. & Beaujean, J.-M., 1976. "Toward a better understanding of energy consumption—II," Energy, Elsevier, vol. 1(4), pages 413-428.
    6. van Sluisveld, Mariësse A.E. & Martínez, Sara Herreras & Daioglou, Vassilis & van Vuuren, Detlef P., 2016. "Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 309-319.
    7. Jalas, Mikko & Juntunen, Jouni K., 2015. "Energy intensive lifestyles: Time use, the activity patterns of consumers, and related energy demands in Finland," Ecological Economics, Elsevier, vol. 113(C), pages 51-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cordroch, Luisa & Hilpert, Simon & Wiese, Frauke, 2022. "Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Proskuryakova, Liliana N. & Ermolenko, Georgy V., 2019. "The future of Russia’s renewable energy sector: Trends, scenarios and policies," Renewable Energy, Elsevier, vol. 143(C), pages 1670-1686.
    3. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    4. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    5. Lin, Boqiang & Chen, Yu, 2020. "Transportation infrastructure and efficient energy services: A perspective of China's manufacturing industry," Energy Economics, Elsevier, vol. 89(C).
    6. Piotr Żuk & Paweł Żuk, 2021. "On the Socio-Cultural Determinants of Polish Entrepreneurs’ Attitudes towards the Development of Renewable Energy: Business, Climate Skepticism Ideology and Climate Change," Energies, MDPI, vol. 14(12), pages 1-16, June.
    7. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    2. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    3. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    4. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
    5. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    6. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    7. Muratori, Matteo & Moran, Michael J. & Serra, Emmanuele & Rizzoni, Giorgio, 2013. "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, Elsevier, vol. 58(C), pages 168-177.
    8. Bai, Yin & Liu, Yong, 2013. "An exploration of residents’ low-carbon awareness and behavior in Tianjin, China," Energy Policy, Elsevier, vol. 61(C), pages 1261-1270.
    9. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    10. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    11. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    12. Ivan Tilov & Benjamin Volland & Mehdi Farsi, 2017. "Interactions in Swiss Households' Energy Demand: A Holistic Approach," IRENE Working Papers 17-11, IRENE Institute of Economic Research.
    13. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    14. Li, Jiajia & Zhang, Jian & Zhang, Dayong & Ji, Qiang, 2019. "Does gender inequality affect household green consumption behaviour in China?," Energy Policy, Elsevier, vol. 135(C).
    15. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    16. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    17. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    18. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    19. Ethan Sharygin, 2013. "The Carbon Cost of an Educated Future: A Consumer Lifestyle Approach," VID Working Papers 1304, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    20. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2613-2627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.