IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp594-610.html
   My bibliography  Save this article

Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes

Author

Listed:
  • Cheng, Cheng
  • Wang, Zhen
  • Liu, Mingming
  • Chen, Qiang
  • Gbatu, Abimelech Paye
  • Ren, Xiaohang

Abstract

This paper applies the real options method to analyse the defer option value and optimal investment timing for solar photovoltaic projects in China. The main purpose of this paper is to examine investment behaviours under different market systems and support schemes. This paper further investigates the interaction of technological progress and support schemes. Four scenarios are designed, and the corresponding real options models are established. In the case study, we find that electricity market reform enhances the defer option value in the short term but makes the owners of solar PV projects postpone their investment. Nevertheless, the government can stimulate investment by implementing appropriate support schemes. Additionally, the impacts of different support schemes vary according to the market system. The impacts of feed-in tariffs and price premiums are similar in a regulated market but are different in a free market. The price premium scheme greatly promotes the defer option values in the short term, but the feed-in tariff scheme excels in the long term. A feed-in tariff has a greater impact on reducing the expected execution time and its variance than the price premium. In addition, more attractive support schemes are required when the technological level is improved.

Suggested Citation

  • Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:594-610
    DOI: 10.1016/j.energy.2017.03.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217305546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalo Cortazar & Eduardo S. Schwartz & Marcelo Salinas, 1998. "Evaluating Environmental Investments: A Real Options Approach," Management Science, INFORMS, vol. 44(8), pages 1059-1070, August.
    2. Zeng, Yaxiong & Klabjan, Diego & Arinez, Jorge, 2015. "Distributed solar renewable generation: Option contracts with renewable energy credit uncertainty," Energy Economics, Elsevier, vol. 48(C), pages 295-305.
    3. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Joseph Sarkis & Maurry Tamarkin, 2008. "Real options analysis for renewable energy technologies in a GHG emissions trading environment," Springer Books, in: Ralf Antes & Bernd Hansjürgens & Peter Letmathe (ed.), Emissions Trading, pages 103-119, Springer.
    6. Lenos Trigeorgis, 1993. "Real Options and Interactions With Financial Flexibility," Financial Management, Financial Management Association, vol. 22(3), Fall.
    7. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    8. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    9. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    10. Zhao, Zhen-yu & Zhang, Shuang-Ying & Hubbard, Bryan & Yao, Xue, 2013. "The emergence of the solar photovoltaic power industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 229-236.
    11. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    14. Martínez Ceseña, E.A. & Mutale, J. & Rivas-Dávalos, F., 2013. "Real options theory applied to electricity generation projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 573-581.
    15. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    16. Sesmero, Juan & Jung, Jinho & Tyner, Wallace, 2016. "The effect of current and prospective policies on photovoltaic system economics: An application to the US Midwest," Energy Policy, Elsevier, vol. 93(C), pages 80-95.
    17. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    18. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    19. Dangl, Thomas, 1999. "Investment and capacity choice under uncertain demand," European Journal of Operational Research, Elsevier, vol. 117(3), pages 415-428, September.
    20. Wong, Kit Pong, 2007. "The effect of uncertainty on investment timing in a real options model," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2152-2167, July.
    21. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Lin, Boqiang & Wesseh, Presley K., 2013. "Valuing Chinese feed-in tariffs program for solar power generation: A real options analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 474-482.
    24. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, vol. 9(4), pages 321-346, December.
    25. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    26. Haakon Vennemo & Kristin Aunan & Henrik Lindhjem & Hans Martin Seip, 2009. "Environmental Pollution in China: Status and Trends," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(2), pages 209-230, Summer.
    27. Weibel, Sebastian & Madlener, Reinhard, 2015. "Cost-Effective Design of Ringwall Storage Hybrid Power Plants: A Real Options Analysis," FCN Working Papers 17/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    28. Torani, Kiran & Rausser, Gordon & Zilberman, David, 2016. "Innovation subsidies versus consumer subsidies: A real options analysis of solar energy," Energy Policy, Elsevier, vol. 92(C), pages 255-269.
    29. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    2. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    3. Barbara Glensk & Reinhard Madlener, 2019. "Energiewende @ Risk: On the Continuation of Renewable Power Generation at the End of Public Policy Support," Energies, MDPI, vol. 12(19), pages 1-25, September.
    4. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    5. Cheng, Cheng & Dong, Kangyin & Wang, Zhen & Liu, Shulin & Jurasz, Jakub & Zhang, Haoran, 2023. "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective," Applied Energy, Elsevier, vol. 336(C).
    6. Kim, Byungil & Kim, Changyoon & Han, SangUk & Bae, JuHyun & Jung, Jaehoon, 2020. "Is it a good time to develop commercial photovoltaic systems on farmland? An American-style option with crop price risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    7. Mombello, Bruno & Olsina, Fernando & Pringles, Rolando, 2023. "Valuing photovoltaic power plants by compound real options," Renewable Energy, Elsevier, vol. 216(C).
    8. Ruxu Sheng & Juntian Du & Songqi Liu & Changan Wang & Zidi Wang & Xiaoqian Liu, 2021. "Solar Photovoltaic Investment Changes across China Regions Using a Spatial Shift-Share Analysis," Energies, MDPI, vol. 14(19), pages 1-14, October.
    9. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    10. Bistline, John E. & Comello, Stephen D. & Sahoo, Anshuman, 2018. "Managerial flexibility in levelized cost measures: A framework for incorporating uncertainty in energy investment decisions," Energy, Elsevier, vol. 151(C), pages 211-225.
    11. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    2. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    3. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    4. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    5. Assereto, Martina & Byrne, Julie, 2021. "No real option for solar in Ireland: A real option valuation of utility scale solar investment in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    7. Cheng, Cheng & Dong, Kangyin & Wang, Zhen & Liu, Shulin & Jurasz, Jakub & Zhang, Haoran, 2023. "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective," Applied Energy, Elsevier, vol. 336(C).
    8. Detemple, Jerome & Kitapbayev, Yerkin, 2022. "Optimal technology adoption for power generation," Energy Economics, Elsevier, vol. 111(C).
    9. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    10. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    11. Zhang, Hanyu & Assereto, Martina & Byrne, Julie, 2023. "Deferring real options with solar renewable energy certificates," Global Finance Journal, Elsevier, vol. 55(C).
    12. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    13. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.
    14. Gazheli, Ardjan & van den Bergh, Jeroen, 2018. "Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2693-2704.
    15. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    16. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    17. Nunes, Luis Eduardo & Lima, Marcus Vinicius Andrade de & Davison, Matthew & Leite, André Luis da Silva, 2021. "Switch and defer option in renewable energy projects: Evidences from Brazil," Energy, Elsevier, vol. 231(C).
    18. José Balibrea-Iniesta, 2020. "Economic Analysis of Renewable Energy Regulation in France: A Case Study for Photovoltaic Plants Based on Real Options," Energies, MDPI, vol. 13(11), pages 1-19, June.
    19. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    20. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:594-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.