IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i5p803-815.html
   My bibliography  Save this article

Optimal investment strategies in decentralized renewable power generation under uncertainty

Author

Listed:
  • Fleten, S.-E.
  • Maribu, K.M.
  • Wangensteen, I.

Abstract

This paper presents a method for evaluating investments in decentralized renewable power generation under price un certainty. The analysis is applicable for a client with an electricity load and a renewable resource that can be utilized for power generation. The investor has a deferrable opportunity to invest in one local power generating unit, with the objective to maximize the profits from the opportunity. Renewable electricity generation can serve local load when generation and load coincide in time, and surplus power can be exported to the grid. The problem is to find the price intervals and the capacity of the generator at which to invest. Results from a case with wind power generation for an office building suggests it is optimal to wait for higher prices than the net present value break-even price under price uncertainty, and that capacity choice can depend on the current market price and the price volatility. With low price volatility there can be more than one investment price interval for different units with intermediate waiting regions between them. High price volatility increases the value of the investment opportunity, and therefore makes it more attractive to postpone investment until larger units are profitable.

Suggested Citation

  • Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:5:p:803-815
    DOI: 10.1016/j.energy.2006.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206001150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Dixit, Avinash, 1993. "Choosing among alternative discrete investment projects under uncertainty," Economics Letters, Elsevier, vol. 41(3), pages 265-268.
    3. Ang, B.W. & Huang, J.P. & Poh, K.L., 1999. "Break-even price of distributed generation under uncertainty," Energy, Elsevier, vol. 24(7), pages 579-589.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    6. Thomas E. Hoff, 1997. "Using Distributed Resources to Manage Risks Caused by Demand Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bobtcheff, Catherine & Villeneuve, Stéphane, 2010. "Technology choice under several uncertainty sources," European Journal of Operational Research, Elsevier, vol. 206(3), pages 586-600, November.
    2. Alejandro Mac Cawley & Maximiliano Cubillos & Rodrigo Pascual, 2020. "A real options approach for joint overhaul and replacement strategies with mean reverting prices," Annals of Operations Research, Springer, vol. 286(1), pages 303-324, March.
    3. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    4. Kort, Peter M. & Murto, Pauli & Pawlina, Grzegorz, 2010. "Uncertainty and stepwise investment," European Journal of Operational Research, Elsevier, vol. 202(1), pages 196-203, April.
    5. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    6. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    7. Brueckner, Jan K. & Picard, Pierre M., 2015. "Where and when to invest in infrastructure," Regional Science and Urban Economics, Elsevier, vol. 53(C), pages 123-134.
    8. Nishihara, Michi & Shibata, Takashi, 2013. "The effects of external financing costs on investment timing and sizing decisions," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1160-1175.
    9. Avner Bar-Ilan & Yishay D. Maoz, 2021. "Choosing a Price and Cost Combination—The Role of Correlation," JRFM, MDPI, vol. 14(11), pages 1-13, November.
    10. Kuno J.M. Huisman & Peter M. Kort, 2015. "Strategic capacity investment under uncertainty," RAND Journal of Economics, RAND Corporation, vol. 46(2), pages 376-408, June.
    11. Li, Shuai & Cai, Hubo, 2017. "Government incentive impacts on private investment behaviors under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 115-129.
    12. Mariotti, Thomas & Décamps, Jean-Paul & Gensbittel, Fabien, 2021. "Investment Timing and Technological Breakthrough," CEPR Discussion Papers 16246, C.E.P.R. Discussion Papers.
    13. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    14. Siddiqui, Afzal & Takashima, Ryuta, 2012. "Capacity switching options under rivalry and uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 583-595.
    15. Chronopoulos, Michail & De Reyck, Bert & Siddiqui, Afzal, 2011. "Optimal investment under operational flexibility, risk aversion, and uncertainty," European Journal of Operational Research, Elsevier, vol. 213(1), pages 221-237, August.
    16. Chronopoulos, Michail & Siddiqui, Afzal, 2014. "When is it Better to Wait for a New Version? Optimal Replacement of an Emerging Technology under Uncertainty," Discussion Papers 2014/26, Norwegian School of Economics, Department of Business and Management Science.
    17. Michail Chronopoulos & Afzal Siddiqui, 2015. "When is it better to wait for a new version? Optimal replacement of an emerging technology under uncertainty," Annals of Operations Research, Springer, vol. 235(1), pages 177-201, December.
    18. Bakke, Ida & Fleten, Stein-Erik & Hagfors, Lars Ivar & Hagspiel, Verena & Norheim, Beate, 2016. "Investment in mutually exclusive transmission projects under policy uncertainty," Journal of Commodity Markets, Elsevier, vol. 3(1), pages 54-69.
    19. Lukas, Elmar & Spengler, Thomas Stefan & Kupfer, Stefan & Kieckhäfer, Karsten, 2017. "When and how much to invest? Investment and capacity choice under product life cycle uncertainty," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1105-1114.
    20. Somayeh Heydari & Nick Ovenden & Afzal Siddiqui, 2012. "Real options analysis of investment in carbon capture and sequestration technology," Computational Management Science, Springer, vol. 9(1), pages 109-138, February.

    More about this item

    Keywords

    Real options; Renewable electricity technologies; Electricity markets; Stochastic price; Distributed generation;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:5:p:803-815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.