IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp273-284.html
   My bibliography  Save this article

Distributed solar and wind power – Impact on distribution losses

Author

Listed:
  • Goop, Joel
  • Odenberger, Mikael
  • Johnsson, Filip

Abstract

Introducing renewable electricity as distributed generation may be an attractive option in the shift towards a more sustainable electricity system. Yet, it is not clear to what extent an increased use of distributed generation is beneficial from a systems perspective. We therefore investigate the impacts from increased employment of distributed solar and wind power on losses and transformer capacity requirements in distribution systems. The analysis is based on a dispatch model with a simple representation of typical voltage levels in the distribution system. When electricity is transferred between voltage levels, we subtract losses estimated as the transferred energy times a constant loss factor. Our results show that the losses depend on how load is distributed between voltage levels. For total penetration levels up to 40–50% on an energy basis, we find that wind and solar power could potentially reduce distribution losses. Results further indicate that solar photovoltaic capacity in the low voltage level has a limited potential to decrease peak power flows between voltage levels in a setting where seasonal variations in demand and solar output are opposite to each other. Thereby distributed solar generation also has limited potential to defer investments in transformer capacity between voltage levels.

Suggested Citation

  • Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Distributed solar and wind power – Impact on distribution losses," Energy, Elsevier, vol. 112(C), pages 273-284.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:273-284
    DOI: 10.1016/j.energy.2016.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    2. Azzopardi, Brian & Gabriel-Buenaventura, Alejandro, 2014. "Feasibility assessment for high penetration of distributed photovoltaics based on net demand planning," Energy, Elsevier, vol. 76(C), pages 233-240.
    3. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    4. Becker, S. & Rodriguez, R.A. & Andresen, G.B. & Schramm, S. & Greiner, M., 2014. "Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply," Energy, Elsevier, vol. 64(C), pages 404-418.
    5. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    6. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    7. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    8. Tapia-Ahumada, K. & Pérez-Arriaga, I.J. & Moniz, E.J., 2013. "A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power," Energy Policy, Elsevier, vol. 61(C), pages 496-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheikhhoseini, Mousa & Rashidinejad, Masoud & Ameri, Mehran & Abdollahi, Amir, 2018. "Economic analysis of support policies for residential photovoltaic systems in Iran," Energy, Elsevier, vol. 165(PA), pages 853-866.
    2. Stecanella, Priscilla A. Juá & Camargos, Ronaldo S.C. & Vieira, Daniel & Domingues, Elder G. & Ferreira Filho, Anésio de L., 2022. "A methodology for determining the incentive policy for photovoltaic distributed generation that leverages its technical benefits in the distribution system," Renewable Energy, Elsevier, vol. 199(C), pages 474-485.
    3. Zhou, Bin & Xu, Da & Chan, Ka Wing & Li, Canbing & Cao, Yijia & Bu, Siqi, 2017. "A two-stage framework for multiobjective energy management in distribution networks with a high penetration of wind energy," Energy, Elsevier, vol. 135(C), pages 754-766.
    4. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    5. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    6. Nomaguchi, Yutaka & Tanaka, Hiroki & Sakakibara, Akiyuki & Fujita, Kikuo & Kishita, Yusuke & Hara, Keishiro & Uwasu, Michinori, 2017. "Integrated planning of low-voltage power grids and subsidies toward a distributed generation system – Case study of the diffusion of photovoltaics in a Japanese dormitory town," Energy, Elsevier, vol. 140(P1), pages 779-793.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    2. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    3. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Bianco, Vincenzo & Scarpa, Federico, 2018. "Impact of the phase out of French nuclear reactors on the Italian power sector," Energy, Elsevier, vol. 150(C), pages 722-734.
    6. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    7. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    8. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    9. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    10. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    11. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    12. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    13. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    15. Andresen, Gorm B. & Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2014. "The potential for arbitrage of wind and solar surplus power in Denmark," Energy, Elsevier, vol. 76(C), pages 49-58.
    16. Andreas Coester & Marjan Hofkes & Elissaios Papyrakis, "undated". "Cross-border Electricity Transfers in the case of differentiated Renewable Energy Sources: A Simulation Analysis for Germany and Spain," Tinbergen Institute Discussion Papers 22-043/VIII, Tinbergen Institute.
    17. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    18. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    19. Thellufsen, Jakob Zinck & Lund, Henrik, 2017. "Cross-border versus cross-sector interconnectivity in renewable energy systems," Energy, Elsevier, vol. 124(C), pages 492-501.
    20. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:273-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.