IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp414-429.html
   My bibliography  Save this article

Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany

Author

Listed:
  • Almansoori, A.
  • Betancourt-Torcat, A.

Abstract

The increasing global demand for petroleum-based fuels, mainly driven by the economic growth in emerging markets imposes significant challenges in terms of energy supply and environmental mitigation strategies. This work introduces an approach for the design and decision making of primary energy source, production, storage, and distribution networks for hydrogen supply in regions (or countries) under emission constraints. The problem was mathematically represented using a source-sink system approach to determine the most suitable hydrogen supply chain (HSC) network. The optimization problem was formulated as a Mixed Integer Linear Programming (MILP) model using GAMS® modeling system. The optimization objective consists of the minimization of the total network cost, both in terms of capital and operating expenditures, subject to: supply, demand, mass conservation, technical performance, economic, and environmental constraints. The model was used to plan the future hydrogen supply chain network for Germany in the year 2030 under emission constraints. The optimization results show that the model is a valuable tool for planning the optimal hydrogen supply chain network of a particular region or country.

Suggested Citation

  • Almansoori, A. & Betancourt-Torcat, A., 2016. "Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany," Energy, Elsevier, vol. 111(C), pages 414-429.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:414-429
    DOI: 10.1016/j.energy.2016.05.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boeters, Stefan & Koornneef, Joris, 2011. "Supply of renewable energy sources and the cost of EU climate policy," Energy Economics, Elsevier, vol. 33(5), pages 1024-1034, September.
    2. Peter Heindl & Peter J. Wood & Frank Jotzo, 2014. "Combining International Cap-and-Trade with National Carbon Taxes," CCEP Working Papers 1418, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    3. Stauffer, Hoff, 2006. "Beware Capital Charge Rates," The Electricity Journal, Elsevier, vol. 19(3), pages 81-86, April.
    4. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, January.
    5. Böhringer, Christoph & Rutherford, Thomas F. & Tol, Richard S. J., 2009. "The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment," Papers WP325, Economic and Social Research Institute (ESRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wickham, David & Hawkes, Adam & Jalil-Vega, Francisca, 2022. "Hydrogen supply chain optimisation for the transport sector – Focus on hydrogen purity and purification requirements," Applied Energy, Elsevier, vol. 305(C).
    2. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    3. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    4. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    5. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Peng, Wei & Xin, Baogui & Xie, Lei, 2023. "Optimal strategies for production plan and carbon emission reduction in a hydrogen supply chain under cap-and-trade policy," Renewable Energy, Elsevier, vol. 215(C).
    9. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
    10. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    11. Campíñez-Romero, Severo & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2018. "A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out," Energy, Elsevier, vol. 148(C), pages 1018-1031.
    12. Sebastian Fredershausen & Henrik Lechte & Mathias Willnat & Tobias Witt & Christine Harnischmacher & Tim-Benjamin Lembcke & Matthias Klumpp & Lutz Kolbe, 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    13. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    14. Obara, Shin'ya & Hamanaka, Ryo & El-Sayed, Abeer Galal, 2019. "Design methods for microgrids to address seasonal energy availability – A case study of proposed Showa Antarctic Station retrofits," Applied Energy, Elsevier, vol. 236(C), pages 711-727.
    15. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    16. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    17. Jesus Ochoa Robles & Catherine Azzaro-Pantel & Guillem Martinez Garcia & Alberto Aguilar Lasserre, 2020. "Social cost-benefit assessment as a post-optimal analysis for hydrogen supply chain design and deployment: Application to Occitania (France)," Post-Print hal-03118656, HAL.
    18. Wang, Guotao & Liao, Qi & Li, Zhengbing & Zhang, Haoran & Liang, Yongtu & Wei, Xuemei, 2022. "How does soaring natural gas prices impact renewable energy: A case study in China," Energy, Elsevier, vol. 252(C).
    19. De-León Almaraz, Sofía & Rácz, Viktor & Azzaro-Pantel, Catherine & Szántó, Zoltán Oszkár, 2022. "Multiobjective and social cost-benefit optimisation for a sustainable hydrogen supply chain: Application to Hungary," Applied Energy, Elsevier, vol. 325(C).
    20. Li, Tianxiao & Liu, Pei & Li, Zheng, 2021. "Optimal scale of natural gas reserves in China under increasing and fluctuating demand: A quantitative analysis," Energy Policy, Elsevier, vol. 152(C).
    21. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    22. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    23. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    2. Hermeling, Claudia & Löschel, Andreas & Mennel, Tim, 2013. "A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets," Energy Policy, Elsevier, vol. 55(C), pages 27-35.
    3. Burmeister, Johannes & Peterson, Sonja, 2016. "National climate policies in times of the European Union Emissions Trading System (EU ETS)," Kiel Working Papers 2052, Kiel Institute for the World Economy (IfW Kiel).
    4. Boeters, Stefan, 2014. "Optimally differentiated carbon prices for unilateral climate policy," Energy Economics, Elsevier, vol. 45(C), pages 304-312.
    5. Peter Heindl & Peter J. Wood & Frank Jotzo, 2014. "Combining International Cap-and-Trade with National Carbon Taxes," CCEP Working Papers 1418, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    6. Böhringer, Christoph & Keller, Andreas & Bortolamedi, Markus & Rahmeier Seyffarth, Anelise, 2016. "Good things do not always come in threes: On the excess cost of overlapping regulation in EU climate policy," Energy Policy, Elsevier, vol. 94(C), pages 502-508.
    7. Corradini, Massimiliano & Costantini, Valeria & Markandya, Anil & Paglialunga, Elena & Sforna, Giorgia, 2018. "A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design," Energy Policy, Elsevier, vol. 120(C), pages 73-84.
    8. Stefan Walter, 2018. "The Regional Impact of Biofuel Economics," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 12(3), pages 369-386, August.
    9. Brink, Corjan & Vollebergh, Herman R.J. & van der Werf, Edwin, 2016. "Carbon pricing in the EU: Evaluation of different EU ETS reform options," Energy Policy, Elsevier, vol. 97(C), pages 603-617.
    10. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    11. Daniel Gabaldón-Estevan & Elisa Peñalvo-López & David Alfonso Solar, 2018. "The Spanish Turn against Renewable Energy Development," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    12. Kotchen, Matthew J. & Salant, Stephen W., 2011. "A free lunch in the commons," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 245-253, May.
    13. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    14. Yu-Bong Lai, 2004. "Trade liberalization, consumption externalities and the environment," Economics Bulletin, AccessEcon, vol. 17(5), pages 1-9.
    15. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    16. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    17. Giancarlo Giudici & Massimiliano Guerini & Cristina Rossi-Lamastra, 2019. "The creation of cleantech startups at the local level: the role of knowledge availability and environmental awareness," Small Business Economics, Springer, vol. 52(4), pages 815-830, April.
    18. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.
    19. Na Li Dawson & Kathleen Segerson, 2008. "Voluntary Agreements with Industries: Participation Incentives with Industry-Wide Targets," Land Economics, University of Wisconsin Press, vol. 84(1), pages 97-114.
    20. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:414-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.