IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v108y2016icp155-161.html
   My bibliography  Save this article

Comparisons between energy carriers' productions for exploiting renewable energy sources

Author

Listed:
  • Trop, P.
  • Goricanec, D.

Abstract

This paper provides comparisons between three different energy carriers that could be produced within areas having cheap electricity. The comparisons were made in terms of the technological efficiencies and economical viabilities for five different scenarios. Economical comparisons were based on IRR (internal rate of return) calculations and sensitivity analyses covering different independent variables such as carbon tax, electricity price and capital costs. It was discovered that SNG (synthetic natural gas) and LNG (liquid natural gas) production is economically uncompetitive compared to ammonia and methanol productions. Ammonia production would be the better choice if there were a carbon tax between 0 and 83EUR/t of CO2. At a carbon tax higher than 83EUR/t, methanol production would be the more economical option.

Suggested Citation

  • Trop, P. & Goricanec, D., 2016. "Comparisons between energy carriers' productions for exploiting renewable energy sources," Energy, Elsevier, vol. 108(C), pages 155-161.
  • Handle: RePEc:eee:energy:v:108:y:2016:i:c:p:155-161
    DOI: 10.1016/j.energy.2015.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Maria T., 2013. "Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions," Energy, Elsevier, vol. 57(C), pages 699-708.
    2. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    3. Franz, Johannes & Maas, Pascal & Scherer, Viktor, 2014. "Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes," Applied Energy, Elsevier, vol. 130(C), pages 532-542.
    4. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    5. Kost, Christoph & Engelken, Maximilian & Schlegl, Thomas, 2012. "Value generation of future CSP projects in North Africa," Energy Policy, Elsevier, vol. 46(C), pages 88-99.
    6. De Simio, L. & Gambino, M. & Iannaccone, S., 2013. "Possible transport energy sources for the future," Transport Policy, Elsevier, vol. 27(C), pages 1-10.
    7. Schulte Beerbühl, S. & Fröhling, M. & Schultmann, F., 2015. "Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies," European Journal of Operational Research, Elsevier, vol. 241(3), pages 851-862.
    8. Davis, William & Martín, Mariano, 2014. "Optimal year-round operation for methane production from CO2 and water using wind energy," Energy, Elsevier, vol. 69(C), pages 497-505.
    9. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    10. Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A thermodynamic assessment," Energy, Elsevier, vol. 82(C), pages 714-721.
    11. Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
    12. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2014. "Potential impact of transition to a low-carbon transport system in Iceland," Energy Policy, Elsevier, vol. 69(C), pages 127-142.
    13. Trop, P. & Anicic, B. & Goricanec, D., 2014. "Production of methanol from a mixture of torrefied biomass and coal," Energy, Elsevier, vol. 77(C), pages 125-132.
    14. Gilmore, Elisabeth A. & Blohm, Andrew & Sinsabaugh, Steven, 2014. "An economic and environmental assessment of transporting bulk energy from a grazing ocean thermal energy conversion facility," Renewable Energy, Elsevier, vol. 71(C), pages 361-367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obara, Shin'ya, 2019. "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," Energy, Elsevier, vol. 174(C), pages 848-860.
    2. Laib, I. & Hamidat, A. & Haddadi, M. & Ramzan, N. & Olabi, A.G., 2018. "Study and simulation of the energy performances of a grid-connected PV system supplying a residential house in north of Algeria," Energy, Elsevier, vol. 152(C), pages 445-454.
    3. Abdulaziz Alanazi & Mohana Alanazi, 2023. "Multicriteria Decision-Making for Evaluating Solar Energy Source of Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    4. Aniket R. Khade & Vijaya D. Damodara & Daniel H. Chen, 2023. "Reduced Mechanism for Combustion of Ammonia and Natural Gas Mixtures," Clean Technol., MDPI, vol. 5(2), pages 1-13, April.
    5. Ali Javaid & Umer Javaid & Muhammad Sajid & Muhammad Rashid & Emad Uddin & Yasar Ayaz & Adeel Waqas, 2022. "Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    2. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    3. Frattini, D. & Cinti, G. & Bidini, G. & Desideri, U. & Cioffi, R. & Jannelli, E., 2016. "A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants," Renewable Energy, Elsevier, vol. 99(C), pages 472-482.
    4. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution," Energy, Elsevier, vol. 71(C), pages 638-644.
    5. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
    6. Eveloy, Valerie & Gebreegziabher, Tesfaldet, 2019. "Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates," Energy, Elsevier, vol. 166(C), pages 426-450.
    7. Er-rbib, Hanaâ & Bouallou, Chakib, 2014. "Modeling and simulation of CO methanation process for renewable electricity storage," Energy, Elsevier, vol. 75(C), pages 81-88.
    8. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    9. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    10. Mesfun, Sennai & Sanchez, Daniel L. & Leduc, Sylvain & Wetterlund, Elisabeth & Lundgren, Joakim & Biberacher, Markus & Kraxner, Florian, 2017. "Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region," Renewable Energy, Elsevier, vol. 107(C), pages 361-372.
    11. König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    15. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    16. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    17. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    18. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    19. Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
    20. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:108:y:2016:i:c:p:155-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.