IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10228-d1181277.html
   My bibliography  Save this article

Multicriteria Decision-Making for Evaluating Solar Energy Source of Saudi Arabia

Author

Listed:
  • Abdulaziz Alanazi

    (Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 73222, Saudi Arabia)

  • Mohana Alanazi

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

Abstract

Saudi Arabia generates more than 98% of its electricity through hydrocarbon resources. To reduce the consumption of fossil fuel resources and protect the environment, the government of Saudi Arabia is planning to make renewable energy an essential part of its energy mix. In this study, due to the country’s abundant solar potential, solar energy has been selected as the energy source to generate renewable energy in Saudi Arabia. The two solar energy technologies, photovoltaic (PV) and solar thermal, have been analyzed in three different locations within the country. Multi-criteria decision-making (MCDM) techniques were used to rank the cities for each of the technologies. The SAW(Simple Additive Weighting)-AHP(Analytic Hierarchy Process) MCDM method based on climate, environmental, technical, economic, and social has been adopted to analyze the suitability of each technology for all locations. To assign weights to the criteria AHP method was used, while to rank the technologies, SAW was used. The results show that for the PV technology, Abha ranked 1st with a performance score of 91%, making it the most suitable location, followed by Jeddah with 83%. While for solar thermal technologies, Jeddah is the most suitable location, with a performance score of 96%, followed by Abha with 91%. The PV systems generated a maximum of 11,019 MWh in Abha, while the solar thermal produced maximum of 14,000 MWh in Jeddah. Overall, solar thermal technology outperformed PV technology in Saudi Arabia due to the country’s higher temperature. The analysis of photovoltaic and solar thermal technologies in this study provides valuable insight for the government of Saudi Arabia in identifying the best site for solar energy technologies in the country.

Suggested Citation

  • Abdulaziz Alanazi & Mohana Alanazi, 2023. "Multicriteria Decision-Making for Evaluating Solar Energy Source of Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10228-:d:1181277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & Samsul Rizal & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    2. Huang, Chang & Hou, Hongjuan & Hu, Eric & Liang, Mingyu & Yang, Yongping, 2017. "Impact of power station capacities and sizes of solar field on the performance of solar aided power generation," Energy, Elsevier, vol. 139(C), pages 667-679.
    3. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    4. Mashal, Ibrahim & Alsaryrah, Osama & Chung, Tein-Yaw & Yuan, Fong-Ching, 2020. "A multi-criteria analysis for an internet of things application recommendation system," Technology in Society, Elsevier, vol. 60(C).
    5. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    6. Diemuodeke, E.O. & Addo, A. & Oko, C.O.C. & Mulugetta, Y. & Ojapah, M.M., 2019. "Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm," Renewable Energy, Elsevier, vol. 134(C), pages 461-477.
    7. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    8. Gong, Jing-hu & Huang, Ji & Hu, Xiaojian & Wang, Jun & Lund, Peter D. & Gao, Caiyun, 2021. "Optimizing research on large-aperture parabolic trough condenser using two kinds of absorber tubes with reflector at 500 °C," Renewable Energy, Elsevier, vol. 179(C), pages 2187-2197.
    9. Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
    10. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    11. Dehghan, Hassan & Pourfayaz, Fathollah & Shahsavari, Ardavan, 2022. "Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system," Renewable Energy, Elsevier, vol. 198(C), pages 189-199.
    12. Trop, P. & Goricanec, D., 2016. "Comparisons between energy carriers' productions for exploiting renewable energy sources," Energy, Elsevier, vol. 108(C), pages 155-161.
    13. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.
    14. Keramitsoglou, Kiriaki M. & Mellon, Robert C. & Tsagkaraki, Maria I. & Tsagarakis, Konstantinos P., 2016. "Clean, not green: The effective representation of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1332-1337.
    15. Abdelhady, Suzan, 2021. "Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)," Renewable Energy, Elsevier, vol. 168(C), pages 332-342.
    16. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    17. Abdullah Al-Badi & Abdulmajeed Al Wahaibi & Razzaqul Ahshan & Arif Malik, 2022. "Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman," Energies, MDPI, vol. 15(15), pages 1-14, July.
    18. Alnatheer, Othman, 2005. "The potential contribution of renewable energy to electricity supply in Saudi Arabia," Energy Policy, Elsevier, vol. 33(18), pages 2298-2312, December.
    19. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    20. Mohammed Kharrich & Salah Kamel & Ali S. Alghamdi & Ahmad Eid & Mohamed I. Mosaad & Mohammed Akherraz & Mamdouh Abdel-Akher, 2021. "Optimal Design of an Isolated Hybrid Microgrid for Enhanced Deployment of Renewable Energy Sources in Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    21. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    22. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    2. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    3. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    5. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    6. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    7. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    8. Aloini, Davide & Dulmin, Riccardo & Mininno, Valeria & Pellegrini, Luisa & Farina, Giulia, 2018. "Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 38-48.
    9. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    10. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Cucchiella, Federica & D’Adamo, Idiano & Gastaldi, Massimo & Koh, SC Lenny & Rosa, Paolo, 2017. "A comparison of environmental and energetic performance of European countries: A sustainability index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 401-413.
    12. Polash Ahmed & Md. Ferdous Rahman & A. K. M. Mahmudul Haque & Mustafa K. A. Mohammed & G. F. Ishraque Toki & Md. Hasan Ali & Abdul Kuddus & M. H. K. Rubel & M. Khalid Hossain, 2023. "Feasibility and Techno-Economic Evaluation of Hybrid Photovoltaic System: A Rural Healthcare Center in Bangladesh," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    13. Mahdavi, Meisam & Jurado, Francisco & Ramos, Ricardo Alan Verdú & Awaafo, Augustine, 2023. "Hybrid biomass, solar and wind electricity generation in rural areas of Fez-Meknes region in Morocco considering water consumption of animals and anaerobic digester," Applied Energy, Elsevier, vol. 343(C).
    14. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    15. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    16. Farshchian, Ghazaleh & Darestani, Soroush Avakh & Hamidi, Naser, 2021. "Developing a decision-making dashboard for power losses attributes of Iran’s electricity distribution network," Energy, Elsevier, vol. 216(C).
    17. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    18. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    19. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    20. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10228-:d:1181277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.