IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp1-9.html
   My bibliography  Save this article

Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover

Author

Listed:
  • Li, Dong
  • Huang, Xianbo
  • Wang, Qingjing
  • Yuan, Yuexiang
  • Yan, Zhiying
  • Li, Zhidong
  • Huang, Yajun
  • Liu, Xiaofeng

Abstract

In order to develop a time-saving method for determination of ultimate methane production, obtain the hydrolysis kinetic constant, and identify a determination method for the nonbiodegradable organic fraction of substrate (VSNB) of green and air-dried corn stover, the kinetics of methane production and hydrolysis were studied using batch tests. The results showed that the conventional first-order hydrolysis kinetic model was not suitable for describing the entire hydrolysis process of corn stover, because there were two first-order decay periods for hydrolysis of corn stover. The hydrolysis kinetic constants kH,1 and kH,2 of the first and second periods were 0.1701 and 0.0415 1/d for green stover and 0.1052 and 0.0360 1/d for air-dried stover. The value of VSNB could be obtained by the graphical method rather than by the hydrolysis kinetic model. The obtained VSNB contents were 12.9% and 24.7% of VS (volatile solid) for green and air-dried stover, respectively. The ultimate methane production and corresponding digestion time could be understood through the methane production kinetic model by digestion experiments within a short time. The ultimate methane productions were 347.1 and 319.4 mL/g based on VS and the corresponding digestion times were 69.2 and 182.3 days for green and air-dried stover, respectively.

Suggested Citation

  • Li, Dong & Huang, Xianbo & Wang, Qingjing & Yuan, Yuexiang & Yan, Zhiying & Li, Zhidong & Huang, Yajun & Liu, Xiaofeng, 2016. "Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover," Energy, Elsevier, vol. 102(C), pages 1-9.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:1-9
    DOI: 10.1016/j.energy.2016.02.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pastor, L. & Ruiz, L. & Pascual, A. & Ruiz, B., 2013. "Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production," Applied Energy, Elsevier, vol. 107(C), pages 438-445.
    2. Kaparaju, Prasad & Serrano, María & Angelidaki, Irini, 2010. "Optimization of biogas production from wheat straw stillage in UASB reactor," Applied Energy, Elsevier, vol. 87(12), pages 3779-3783, December.
    3. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    4. Nizami, A.S. & Orozco, A. & Groom, E. & Dieterich, B. & Murphy, J.D., 2012. "How much gas can we get from grass?," Applied Energy, Elsevier, vol. 92(C), pages 783-790.
    5. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    2. Shen, Jian & Yan, Hu & Zhang, Ruihong & Liu, Guangqing & Chen, Chang, 2018. "Characterization and methane production of different nut residue wastes in anaerobic digestion," Renewable Energy, Elsevier, vol. 116(PA), pages 835-841.
    3. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    4. Wojcieszak, Dawid & Przybył, Jacek & Myczko, Renata & Myczko, Andrzej, 2018. "Technological and energetic evaluation of maize stover silage for methane production on technical scale," Energy, Elsevier, vol. 151(C), pages 903-912.
    5. Wojcieszak, Dawid & Przybył, Jacek & Ratajczak, Izabela & Goliński, Piotr & Janczak, Damian & Waśkiewicz, Agnieszka & Szentner, Kinga & Woźniak, Magdalena, 2020. "Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koch, Konrad & Drewes, Jörg E., 2014. "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data," Applied Energy, Elsevier, vol. 120(C), pages 11-15.
    2. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    4. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    5. Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
    6. Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.
    7. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    8. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    9. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    10. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    11. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    12. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    13. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    14. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    15. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    16. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    17. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    18. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    19. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    20. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.