IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp363-371.html
   My bibliography  Save this article

Retro-analysis of liquid bio-ethanol and bio-diesel in New Zealand

Author

Listed:
  • Krumdieck, S.
  • Page, S.

Abstract

This paper uses a new approach of retro-analysis. Typically policy is informed by forward-looking analysis of potential for alternative energy technologies. But historical knowledge of energy and processing requirements and greenhouse effects is more reliable for engineering evaluation of biofuel production systems. This study calculates energy inputs and greenhouse gas emissions for the most efficient biomass feedstocks in New Zealand if the policy had been implemented to maximize liquid biofuel production in the year 2004/2005. The study uses existing processing technologies and agricultural statistics. Bioethanol production is calculated from putrescible wastes and starch crops, and biodiesel production from rapeseed, tallow, wood and waste paper. Each production system is further evaluated using measures of land use, energy input, crop production related to the energy product, plus relative measures of efficiency and renewability. The research findings are that maximum biofuel production in 2004/2005 would have provided only a few per cent of demand, and would not have reduced dependence on foreign imported oil or exposure to fuel price rise. Finally, we conclude that demand management and efficiency are more effective means of meeting policy objectives.

Suggested Citation

  • Krumdieck, S. & Page, S., 2013. "Retro-analysis of liquid bio-ethanol and bio-diesel in New Zealand," Energy Policy, Elsevier, vol. 62(C), pages 363-371.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:363-371
    DOI: 10.1016/j.enpol.2013.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513007210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    2. Dale, Michael & Krumdieck, Susan & Bodger, Pat, 2011. "Net energy yield from production of conventional oil," Energy Policy, Elsevier, vol. 39(11), pages 7095-7102.
    3. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    4. Saunders, Caroline & Kaye-Blake, William & Marshall, Liz & Greenhalgh, Suzie & de Aragao Pereira, Mariana, 2009. "Impacts of a United States' biofuel policy on New Zealand's agricultural sector," Energy Policy, Elsevier, vol. 37(9), pages 3448-3454, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castañeda-Ayarza, Juan Arturo & Godoi, Beatriz Araújo, 2021. "Macro-environmental influence on the development of Brazilian fuel ethanol between 1975 and 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    2. Šantek, Božidar & Gwehenberger, Gernot & Šantek, Mirela Ivančić & Narodoslawsky, Michael & Horvat, Predrag, 2010. "Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 872-877.
    3. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    4. Burnes, Ellen & Wichelns, Dennis & Hagen, John W., 2005. "Economic and policy implications of public support for ethanol production in California's San Joaquin Valley," Energy Policy, Elsevier, vol. 33(9), pages 1155-1167, June.
    5. Shin, Jungwoo & Hwang, Won-Sik, 2017. "Consumer preference and willingness to pay for a renewable fuel standard (RFS) policy: Focusing on ex-ante market analysis and segmentation," Energy Policy, Elsevier, vol. 106(C), pages 32-40.
    6. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    7. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    8. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    9. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    10. Castoldi, Nicola & Bechini, Luca & Ferrante, Antonio, 2011. "Fossil energy usage for the production of baby leaves," Energy, Elsevier, vol. 36(1), pages 86-93.
    11. Walls, W.D. & Rusco, Frank & Kendix, Michael, 2011. "Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing," Energy Policy, Elsevier, vol. 39(7), pages 3999-4006, July.
    12. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-17.
    13. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    14. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    15. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    16. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    17. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    18. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    19. Eaves, James & Eaves, Stephen, 2007. "Renewable corn-ethanol and energy security," Energy Policy, Elsevier, vol. 35(11), pages 5958-5963, November.
    20. Raush, Kent D. & Belyea, Ronald L. & Singh, Vijay & Tumbleson, M.E., 2007. "Corn Processing Coproducts from Ethanol Production," Biofuels, Food and Feed Tradeoffs Conference, April 12-13, 2007, St, Louis, Missouri 313708, Farm Foundation.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:363-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.