IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v56y2013icp51-62.html
   My bibliography  Save this article

Fuel electricity and plug-in electric vehicles in a low carbon fuel standard

Author

Listed:
  • Yang, Christopher

Abstract

Electricity is unique among the alternative fuels in a low carbon fuel standard (LCFS) policy, in that demand from vehicles is the major barrier to its usage, not supply. This paper presents a policy discussion and policy recommendations on a number of topics related to the regulation and incentives for fuel electricity within the LCFS. In the near-term, the LCFS will have a limited role in incentivizing the use of electricity and lowering the carbon intensity of electricity, and electricity will play a small role in meeting LCFS targets. Calculating a carbon intensity value for electricity is a complex process, requiring many decisions and trade-offs to be made, including allocation methods, system boundaries, temporal resolution and how to treat electricity demand for vehicle charging. These choices along with other regulatory decisions about who can obtain LCFS credits will influence the incentives for providing electricity and charging infrastructure relative to other low-carbon fuels as well as across different electricity providers. The paper discusses how fuel electricity would fit into an LCFS, identifying those special characteristics that could reduce the effectiveness of the policy. It also provides specific recommendations to enable better policy design that appropriately incentivizes the use of low-carbon fuels.

Suggested Citation

  • Yang, Christopher, 2013. "Fuel electricity and plug-in electric vehicles in a low carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 51-62.
  • Handle: RePEc:eee:enepol:v:56:y:2013:i:c:p:51-62
    DOI: 10.1016/j.enpol.2012.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151200403X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andress, David & Dean Nguyen, T. & Das, Sujit, 2010. "Low-carbon fuel standard--Status and analytic issues," Energy Policy, Elsevier, vol. 38(1), pages 580-591, January.
    2. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    3. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8ng2h3x7, Institute of Transportation Studies, UC Davis.
    4. Jiusto, Scott, 2006. "The differences that methods make: Cross-border power flows and accounting for carbon emissions from electricity use," Energy Policy, Elsevier, vol. 34(17), pages 2915-2928, November.
    5. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis," Institute of Transportation Studies, Working Paper Series qt5245b5kx, Institute of Transportation Studies, UC Davis.
    6. Yang, Christopher & McCollum, David L & McCarthy, Ryan & Leighty, Wayne, 2009. "Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California," Institute of Transportation Studies, Working Paper Series qt2ns1q98f, Institute of Transportation Studies, UC Davis.
    7. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    8. Sperling, Daniel & Yeh, Sonia, 2010. "Toward a global low carbon fuel standard," Transport Policy, Elsevier, vol. 17(1), pages 47-49, January.
    9. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    10. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    11. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis," Institute of Transportation Studies, Working Paper Series qt6j67z9w6, Institute of Transportation Studies, UC Davis.
    12. Farrell, Alexander E. & Sperling, Daniel & Arons, S.M. & Brandt, A.R. & Delucchi, M.A. & Eggert, A. & Farrell, A.E. & Haya, B.K. & Hughes, J. & Jenkins, B.M. & Jones, A.D. & Kammen, D.M. & Kaffka, S.R, 2007. "A Low-Carbon Fuel Standard for California Part 1: Technical Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8zm8d3wj, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    2. Mulholland, Eamonn & O'Shea, Richard S.K. & Murphy, Jerry D. & Ó Gallachóir, Brian P., 2016. "Low carbon pathways for light goods vehicles in Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 53-62.
    3. Plevin, Richard J. & Delucchi, Mark A. & O’Hare, Michael, 2017. "Fuel carbon intensity standards may not mitigate climate change," Energy Policy, Elsevier, vol. 105(C), pages 93-97.
    4. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    5. Chaparro, Iván & Watts, David & Gil, Esteban, 2017. "Modeling marginal CO2 emissions in hydrothermal systems: Efficient carbon signals for renewables," Applied Energy, Elsevier, vol. 204(C), pages 318-331.
    6. Álvarez, Roberto & Zubelzu, Sergio & Díaz, Guzmán & López, Alberto, 2015. "Analysis of low carbon super credit policy efficiency in European Union greenhouse gas emissions," Energy, Elsevier, vol. 82(C), pages 996-1010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    2. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    3. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    4. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    5. Creutzig, Felix & McGlynn, Emily & Minx, Jan & Edenhofer, Ottmar, 2011. "Climate policies for road transport revisited (I): Evaluation of the current framework," Energy Policy, Elsevier, vol. 39(5), pages 2396-2406, May.
    6. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    7. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    8. Hankey, Steve & Marshall, Julian D., 2010. "Impacts of urban form on future US passenger-vehicle greenhouse gas emissions," Energy Policy, Elsevier, vol. 38(9), pages 4880-4887, September.
    9. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    10. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    11. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    12. Rubin, Jonathan & Leiby, Paul N., 2013. "Tradable credits system design and cost savings for a national low carbon fuel standard for road transport," Energy Policy, Elsevier, vol. 56(C), pages 16-28.
    13. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    14. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    15. Kammen, Daniel M. & Farrell, Alexander E & Plevin, Richard J & Jones, Andrew & Nemet, Gregory F & Delucchi, Mark, 2008. "Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis," Institute of Transportation Studies, Working Paper Series qt5qw5g6q2, Institute of Transportation Studies, UC Davis.
    16. Dallas Burtraw, 2008. "Regulating CO 2 in electricity markets: sources or consumers?," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 588-606, November.
    17. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    18. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    19. Rode, Philipp & Floater, Graham & Thomopoulos, Nikolas & Docherty, James & Schwinger, Peter & Mahendra, Anjali & Fang, Wanli, 2014. "Accessibility in cities: transport and urban form," LSE Research Online Documents on Economics 60477, London School of Economics and Political Science, LSE Library.
    20. Hoffman, Steven M. & High-Pippert, Angela, 2010. "From private lives to collective action: Recruitment and participation incentives for a community energy program," Energy Policy, Elsevier, vol. 38(12), pages 7567-7574, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:56:y:2013:i:c:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.