IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i4p1991-1998.html
   My bibliography  Save this article

Economics of wind power when national grids are unreliable

Author

Listed:
  • van Kooten, G. Cornelis
  • Wong, Linda

Abstract

Power interruptions are a typical characteristic of national grids in developing countries. Manufacturing, processing, refrigeration and other facilities that require a dependable supply of power, and might be considered a small grid within the larger national grid, employ diesel generators for backup. In this study, we develop a stochastic simulation model of a very small grid connected to an unreliable national grid to show that the introduction of wind-generated power can, despite its intermittency, reduce costs significantly. For a small grid with a peak load of 2.85Â MW and diesel generating capacity of 3.75Â MW provided by two diesel generators, the savings from using wind energy (based on wind data for Mekelle, Ethiopia) can amount to millions of dollars for a typical July month, or some 5.5-17.5% of total electricity costs. While wind power can lead to significant savings, the variability of wind prevents elimination of the smaller of two diesel units, although this peaking unit operates less frequently than in the absence of wind power.

Suggested Citation

  • van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:4:p:1991-1998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00930-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    2. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    3. Pitt, Lawrence & van Kooten, G. Cornelis & Love, Murray & Djilali, Ned, 2005. "Utility-scale Wind Power: Impacts of Increased Penetration," Working Papers 37009, University of Victoria, Resource Economics and Policy.
    4. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    5. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2008. "Network constrained wind integration on Vancouver Island," Energy Policy, Elsevier, vol. 36(2), pages 591-602, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    2. Gebreegziabher, Zenebe & van Kooten, G. Cornelis, 2013. "Does community and household tree planting imply increased use of wood for fuel? Evidence from Ethiopia," Forest Policy and Economics, Elsevier, vol. 34(C), pages 30-40.
    3. Timilsina, Govinda R. & Cornelis van Kooten, G. & Narbel, Patrick A., 2013. "Global wind power development: Economics and policies," Energy Policy, Elsevier, vol. 61(C), pages 642-652.
    4. Alfaro, Jose & Miller, Shelie, 2014. "Satisfying the rural residential demand in Liberia with decentralized renewable energy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 903-911.
    5. G. Cornelis van Kooten, 2015. "All you want to know about the Economics of Wind Power," Working Papers 2015-07, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Kazimierczuk, Agnieszka H., 2019. "Wind energy in Kenya: A status and policy framework review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 434-445.
    7. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Kooten, G. Cornelis, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 54370, University of Victoria, Resource Economics and Policy.
    2. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    3. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    4. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    5. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    6. Ryan Prescott & G. Cornelis van Kooten & Hui Zhu, 2007. "The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island," Energy & Environment, , vol. 18(6), pages 723-746, November.
    7. McPherson, Madeleine & Karney, Bryan, 2017. "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model," Energy, Elsevier, vol. 138(C), pages 185-196.
    8. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Review of developments and insights into an index system of wind power utilization level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 463-471.
    9. van Kooten, G. Cornelis & Wong, Linda, 2009. "Economic Aspects of Wind Power Generation in Developing Countries," Working Papers 54706, University of Victoria, Resource Economics and Policy.
    10. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2010. "Managing Water Shortages in the Western Electricity Grids," Working Papers 59701, University of Victoria, Resource Economics and Policy.
    11. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    12. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
    13. Phillips, Benjamin R. & Middleton, Richard S., 2012. "SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission," Energy Policy, Elsevier, vol. 43(C), pages 291-302.
    14. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    17. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    18. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    19. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    20. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.

    More about this item

    Keywords

    Developing countries Simulation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:4:p:1991-1998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.