IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i8p3159-3167.html
   My bibliography  Save this article

The value of reducing distribution losses by domestic load-shifting: a network perspective

Author

Listed:
  • Shaw, Rita
  • Attree, Mike
  • Jackson, Tim
  • Kay, Mike

Abstract

Shifting domestic load to off-peak time periods could potentially reduce electrical distribution losses and associated carbon emissions. This paper provides the first quantitative estimate of the possible reduction in losses, for a situation where domestic energy demand is shifted in time but not reduced. At a likely 0.02% of energy distributed by the network, the reduction is small relative to overall losses and to their variability, giving little rationale for distribution network operators in Great Britain to encourage such load-shifting for that reason. The paper also considers the limited regulatory incentives for the reduction, and the fragmentation of costs and benefits across different parties. The societal value is considerably higher than the current regulatory incentive, but nonetheless may still not warrant the cost of action. Reducing rather than shifting load is likely to give greater environmental benefits.

Suggested Citation

  • Shaw, Rita & Attree, Mike & Jackson, Tim & Kay, Mike, 2009. "The value of reducing distribution losses by domestic load-shifting: a network perspective," Energy Policy, Elsevier, vol. 37(8), pages 3159-3167, August.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:3159-3167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00228-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hopper, Nicole & Goldman, Charles & Bharvirkar, Ranjit & Neenan, Bernie, 2006. "Customer response to day-ahead market hourly pricing: Choices and performance," Utilities Policy, Elsevier, vol. 14(2), pages 126-134, June.
    2. Newborough, M. & Probert, S. D., 1990. "Intelligent automatic electrical-load management for networks of major domestic appliances," Applied Energy, Elsevier, vol. 37(2), pages 151-168.
    3. Swisher, Joel & Orans, Ren, 1995. "The use of area-specific utility costs to target intensive DSM campaigns," Utilities Policy, Elsevier, vol. 5(3-4), pages 185-197.
    4. Deering, S. & Newborough, M. & Probert, S. D., 1993. "Rescheduling electricity demands in domestic buildings," Applied Energy, Elsevier, vol. 44(1), pages 1-62.
    5. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    6. McDonough, Catherine & Kraus, Robert, 2007. "Does Dynamic Pricing Make Sense for Mass Market Customers?," The Electricity Journal, Elsevier, vol. 20(7), pages 26-37.
    7. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    8. Pupp, Roger & Woo, Chi-Keung & Orans, Ren & Horii, Brian & Heffner, Grayson, 1995. "Load research and integrated local T&D planning," Energy, Elsevier, vol. 20(2), pages 89-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adela Conchado & Pedro Linares, 2010. "The Economic Impact of Demand-Response Programs on Power Systems. A survey of the State of the Art," Working Papers 02-2010, Economics for Energy.
    2. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    3. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    4. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    5. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    6. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    7. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    8. Stefano Moroni & Valentina Antoniucci & Adriano Bisello, 2019. "Local Energy Communities and Distributed Generation: Contrasting Perspectives, and Inevitable Policy Trade-Offs, beyond the Apparent Global Consensus," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    9. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    10. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    11. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    12. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    13. Sung Chan Park & Young Gyu Jin & Yong Tae Yoon, 2015. "Designing a Profit-Maximizing Critical Peak Pricing Scheme Considering the Payback Phenomenon," Energies, MDPI, vol. 8(10), pages 1-17, October.
    14. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    15. Liu, Jiming & Shi, Benyun, 2012. "Towards understanding the robustness of energy distribution networks based on macroscopic and microscopic evaluations," Energy Policy, Elsevier, vol. 49(C), pages 318-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    2. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    3. Jeroen Stragier & Laurence Hauttekeete & Lieven De Marez & Sven Claessens, 2013. "Towards More Energy Efficient Domestic Appliances? Measuring the Perception of Households on Smart Appliances," Energy & Environment, , vol. 24(5), pages 689-700, September.
    4. Torriti, Jacopo, 2012. "Demand Side Management for the European Supergrid: Occupancy variances of European single-person households," Energy Policy, Elsevier, vol. 44(C), pages 199-206.
    5. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    6. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    7. Crockett, R. G. M. & Newborough, M. & Highgate, D. J. & Probert, S. D., 1995. "Electrolyser-based electricity management," Applied Energy, Elsevier, vol. 51(3), pages 249-263.
    8. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    9. Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
    10. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    11. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    12. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    13. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    14. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    15. Claire Bergaentzlé, 2013. "From smart technology to smart consumers: for better system reliability and improved market efficiency," Post-Print halshs-01011169, HAL.
    16. Lambin, Xavier, 2020. "Integration of Demand Response in Electricity Market Capacity Mechanisms," Utilities Policy, Elsevier, vol. 64(C).
    17. Sloot, Daniel & Scheibehenne, Benjamin, 2022. "Understanding the financial incentive conundrum: A meta-analysis of the effectiveness of financial incentive interventions in promoting energy conservation behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    19. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    20. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:8:p:3159-3167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.