IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v173y2023ics0301421522006140.html
   My bibliography  Save this article

A bigger bang for the buck: The impact of risk reduction on renewable energy support payments in Europe

Author

Listed:
  • Đukan, Mak
  • Kitzing, Lena

Abstract

Decarbonizing Europe by 2050 requires significant capital investments in renewable energy (RE). The weighted average costs of capital (WACC) greatly impact RE production costs and influence the government support payments needed for the financial viability of RE projects. Reducing the risks for RE investors can decrease WACC and ensure that the EU meets its climate targets at the least cost. We investigate the potential for lowering support payments to RE projects by de-risking financing conditions through measures including revenue stabilization and low-risk auction designs for solar PV and onshore wind across 21 countries in Europe. We find that de-risking debt is almost twice as effective as de-risking equity. On average, support payments can be reduced by 3.3 EUR/MWh and 1.9 EUR/MWh, respectively, and in some cases, fall to zero. The effects differ across countries, higher-risk countries like Greece would experience more significant benefits from de-risking than lower-risk countries like Denmark and Germany, where support costs depend more on investment variables such as capacity factors. Overall, we show that WACC depends largely on country risk. Nonetheless, de-risking policies like revenue stabilization can improve the investment climate for RE, reduce the need for government support, and contribute to achieving decarbonization targets.

Suggested Citation

  • Đukan, Mak & Kitzing, Lena, 2023. "A bigger bang for the buck: The impact of risk reduction on renewable energy support payments in Europe," Energy Policy, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:enepol:v:173:y:2023:i:c:s0301421522006140
    DOI: 10.1016/j.enpol.2022.113395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522006140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ederer, Nikolaus, 2015. "The market value and impact of offshore wind on the electricity spot market: Evidence from Germany," Applied Energy, Elsevier, vol. 154(C), pages 805-814.
    2. Antonio Estache & Anne-Sophie Steichen, 2015. "Is Belgium overshooting in its policy support to cut the cost of capital of renewable sources of energy ?," Reflets et perspectives de la vie économique, De Boeck Université, vol. 0(1), pages 33-45.
    3. Komendantova, Nadejda & Schinko, Thomas & Patt, Anthony, 2019. "De-risking policies as a substantial determinant of climate change mitigation costs in developing countries: Case study of the Middle East and North African region," Energy Policy, Elsevier, vol. 127(C), pages 404-411.
    4. Côté, Elizabeth & Đukan, Mak & Pons-Seres de Brauwer, Cristian & Wüstenhagen, Rolf, 2022. "The price of actor diversity: Measuring project developers’ willingness to accept risks in renewable energy auctions," Energy Policy, Elsevier, vol. 163(C).
    5. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    6. Đukan, Mak & Kitzing, Lena, 2021. "The impact of auctions on financing conditions and cost of capital for wind energy projects," Energy Policy, Elsevier, vol. 152(C).
    7. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    8. Nils May and Karsten Neuhoff, 2021. "Financing Power: Impacts of Energy Policies in Changing Regulatory Environments," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Karsten Neuhoff & Nils May & Jörn C. Richstein, 2018. "Renewable Energy Policy in the Age of Falling Technology Costs," Discussion Papers of DIW Berlin 1746, DIW Berlin, German Institute for Economic Research.
    10. Dinica, Valentina, 2006. "Support systems for the diffusion of renewable energy technologies--an investor perspective," Energy Policy, Elsevier, vol. 34(4), pages 461-480, March.
    11. Harry Apostoleris & Sgouris Sgouridis & Marco Stefancich & Matteo Chiesa, 2018. "Evaluating the factors that led to low-priced solar electricity projects in the Middle East," Nature Energy, Nature, vol. 3(12), pages 1109-1114, December.
    12. Nils May & Ingmar Jürgens & Karsten Neuhoff, 2017. "Renewable Energy Policy: Risk Hedging Is Taking Center Stage," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 7(39/40), pages 389-396.
    13. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    14. Lundberg, Liv, 2019. "Auctions for all? Reviewing the German wind power auctions in 2017," Energy Policy, Elsevier, vol. 128(C), pages 449-458.
    15. Nils May & Karsten Neuhoff & Jörn C. Richstein, 2018. "Affordable Electricity Supply via Contracts for Difference for Renewable Energy," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 8(28), pages 251-259.
    16. Dobrotkova, Zuzana & Surana, Kavita & Audinet, Pierre, 2018. "The price of solar energy: Comparing competitive auctions for utility-scale solar PV in developing countries," Energy Policy, Elsevier, vol. 118(C), pages 133-148.
    17. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    18. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    19. Angelopoulos, Dimitrios & Doukas, Haris & Psarras, John & Stamtsis, Giorgos, 2017. "Risk-based analysis and policy implications for renewable energy investments in Greece," Energy Policy, Elsevier, vol. 105(C), pages 512-523.
    20. Steffen, Bjarne, 2018. "The importance of project finance for renewable energy projects," Energy Economics, Elsevier, vol. 69(C), pages 280-294.
    21. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    22. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    23. Malte Jansen & Iain Staffell & Lena Kitzing & Sylvain Quoilin & Edwin Wiggelinkhuizen & Bernard Bulder & Iegor Riepin & Felix Müsgens, 2020. "Offshore wind competitiveness in mature markets without subsidy," Nature Energy, Nature, vol. 5(8), pages 614-622, August.
    24. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    25. Florian Egli & Bjarne Steffen & Tobias S. Schmidt, 2018. "A dynamic analysis of financing conditions for renewable energy technologies," Nature Energy, Nature, vol. 3(12), pages 1084-1092, December.
    26. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    27. Mora, Esteve Borràs & Spelling, James & van der Weijde, Adriaan H. & Pavageau, Ellen-Mary, 2019. "The effects of mean wind speed uncertainty on project finance debt sizing for offshore wind farms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    28. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Fichtner, Wolf, 2012. "Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices," Energy Economics, Elsevier, vol. 34(4), pages 1012-1032.
    29. Tobias S. Schmidt, 2014. "Low-carbon investment risks and de-risking," Nature Climate Change, Nature, vol. 4(4), pages 237-239, April.
    30. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    31. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    32. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    33. Tobias S. Schmidt & Bjarne Steffen & Florian Egli & Michael Pahle & Oliver Tietjen & Ottmar Edenhofer, 2019. "Adverse effects of rising interest rates on sustainable energy transitions," Nature Sustainability, Nature, vol. 2(9), pages 879-885, September.
    34. Matt Thompson & Matt Davison & Henning Rasmussen, 2004. "Valuation and Optimal Operation of Electric Power Plants in Competitive Markets," Operations Research, INFORMS, vol. 52(4), pages 546-562, August.
    35. Grashof, Katherina & Berkhout, Volker & Cernusko, Robert & Pfennig, Maximilian, 2020. "Long on promises, short on delivery? Insights from the first two years of onshore wind auctions in Germany," Energy Policy, Elsevier, vol. 140(C).
    36. Geddes, Anna & Schmidt, Tobias S. & Steffen, Bjarne, 2018. "The multiple roles of state investment banks in low-carbon energy finance: An analysis of Australia, the UK and Germany," Energy Policy, Elsevier, vol. 115(C), pages 158-170.
    37. Farooquee, Arsalan Ali & Shrimali, Gireesh, 2016. "Making renewable energy competitive in India: Reducing financing costs via a government-sponsored hedging facility," Energy Policy, Elsevier, vol. 95(C), pages 518-528.
    38. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    39. Klessmann, Corinna & Rathmann, Max & de Jager, David & Gazzo, Alexis & Resch, Gustav & Busch, Sebastian & Ragwitz, Mario, 2013. "Policy options for reducing the costs of reaching the European renewables target," Renewable Energy, Elsevier, vol. 57(C), pages 390-403.
    40. Schinko, Thomas & Komendantova, Nadejda, 2016. "De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation," Renewable Energy, Elsevier, vol. 92(C), pages 262-272.
    41. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alin Opreana & Simona Vinerean & Diana Marieta Mihaiu & Liliana Barbu & Radu-Alexandru Șerban, 2023. "Fuzzy Analytic Network Process with Principal Component Analysis to Establish a Bank Performance Model under the Assumption of Country Risk," Mathematics, MDPI, vol. 11(14), pages 1-38, July.
    2. Stefanos Tampakakis & Dimitrios Zafirakis, 2023. "On the Value of Emerging, Day-Ahead Market Related Wind-Storage Narratives in Greece: An Early Empirical Analysis," Energies, MDPI, vol. 16(8), pages 1-19, April.
    3. Neuhoff, Karsten & Richstein, Jörn C. & Kröger, Mats, 2023. "Reacting to changing paradigms: How and why to reform electricity markets," Energy Policy, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    2. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    3. Friedemann Polzin & Mark Sanders & Bjarne Steffen & Florian Egli & Tobias S. Schmidt & Panagiotis Karkatsoulis & Panagiotis Fragkos & Leonidas Paroussos, 2021. "The effect of differentiating costs of capital by country and technology on the European energy transition," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    4. Đukan, Mak & Kitzing, Lena, 2021. "The impact of auctions on financing conditions and cost of capital for wind energy projects," Energy Policy, Elsevier, vol. 152(C).
    5. Lindahl, Johan & Lingfors, David & Elmqvist, Åsa & Mignon, Ingrid, 2022. "Economic analysis of the early market of centralized photovoltaic parks in Sweden," Renewable Energy, Elsevier, vol. 185(C), pages 1192-1208.
    6. Egli, Florian & Orgland, Nikolai & Taylor, Michael & Schmidt, Tobias S. & Steffen, Bjarne, 2023. "Estimating the cost of capital for solar PV projects using auction results," Energy Policy, Elsevier, vol. 183(C).
    7. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    8. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    9. Melliger, Marc & Chappin, Emile, 2022. "Phasing out support schemes for renewables in neighbouring countries: An agent-based model with investment preferences," Applied Energy, Elsevier, vol. 305(C).
    10. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    11. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    12. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    13. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    14. Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
    15. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    16. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Sánchez de la Nieta, A.A. & Contreras, J., 2020. "Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case," Energy Economics, Elsevier, vol. 90(C).
    18. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    19. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da, 2019. "The “Merit-order effect” of wind and solar power: Volatility and determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 54-62.
    20. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:173:y:2023:i:c:s0301421522006140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.