IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v169y2022ics0301421522003834.html
   My bibliography  Save this article

Policy implications of spatially differentiated renewable energy promotion: A multi-level scenario analysis of onshore wind auctioning in Germany

Author

Listed:
  • Sheykhha, Siamak
  • Borggrefe, Frieder
  • Madlener, Reinhard

Abstract

Auctions have been introduced in many countries as a useful alternative for renewable energy support. However, they often lead to a high concentration of renewable energy power plants at productive sites, at the expense of other, less favorable sites. This paper studies the impact of alternative renewable energy auction schemes on the promotion of renewable energy in Germany, using a novel multi-level approach—analyzing auctioning on the national, north/south, and federal states level, respectively. First, using a GIS tool, the onshore wind potential is studied at a high regional and temporal resolution. The results of this analysis show a considerable untapped onshore wind potential in the southern federal states of Germany. Second, an onshore wind power auction model is developed by using a system dynamics approach. Finally, the policy support payments are compared for different auction designs by using an electricity market simulation model. The findings suggest that more bidders from the southern federal states could win in the regional auctions. Detailed spatial analysis reveals a trade-off between balanced diversity of bidders and the average auction price. We conclude that regional auctioning can indeed lead to significant support payment savings, and should thus be considered in renewable energy support policy design.

Suggested Citation

  • Sheykhha, Siamak & Borggrefe, Frieder & Madlener, Reinhard, 2022. "Policy implications of spatially differentiated renewable energy promotion: A multi-level scenario analysis of onshore wind auctioning in Germany," Energy Policy, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522003834
    DOI: 10.1016/j.enpol.2022.113158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522003834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    3. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    4. Matthäus, David & Schwenen, Sebastian & Wozabal, David, 2021. "Renewable auctions: Bidding for real options," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1091-1105.
    5. Bulow, Jeremy & Roberts, John, 1989. "The Simple Economics of Optimal Auctions," Journal of Political Economy, University of Chicago Press, vol. 97(5), pages 1060-1090, October.
    6. Kreiss, Jan & Ehrhart, Karl-Martin & Haufe, Marie-Christin, 2017. "Appropriate design of auctions for renewable energy support – Prequalifications and penalties," Energy Policy, Elsevier, vol. 101(C), pages 512-520.
    7. Schmalensee, Richard, 1981. "Output and Welfare Implications of Monopolistic Third-Degree Price Discrimination," American Economic Review, American Economic Association, vol. 71(1), pages 242-247, March.
    8. Ravi Bapna & Robert Day & Sarah Rice, 2020. "Allocative Efficiency in Online Auctions: Improving the Performance of Multiple Online Auctions Via Seek‐and‐Protect Agents," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1878-1893, August.
    9. Bichler, Martin & Grimm, Veronika & Kretschmer, Sandra & Sutterer, Paul, 2020. "Market design for renewable energy auctions: An analysis of alternative auction formats," Energy Economics, Elsevier, vol. 92(C).
    10. Lundberg, Liv, 2019. "Auctions for all? Reviewing the German wind power auctions in 2017," Energy Policy, Elsevier, vol. 128(C), pages 449-458.
    11. Andreas Voss and Reinhard Madlener, 2017. "Auction Schemes, Bidding Strategies and the Cost-Optimal Level of Promoting Renewable Electricity in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    12. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    13. Winkler, Jenny & Magosch, Magdalena & Ragwitz, Mario, 2018. "Effectiveness and efficiency of auctions for supporting renewable electricity – What can we learn from recent experiences?," Renewable Energy, Elsevier, vol. 119(C), pages 473-489.
    14. Kannan, Karthik N., 2010. "Declining prices in sequential auctions with complete revelation of bids," Economics Letters, Elsevier, vol. 108(1), pages 49-51, July.
    15. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2017. "A Cellular Approach to Net-Zero Energy Cities," Energies, MDPI, vol. 10(11), pages 1-17, November.
    16. Luiz T. A. Maurer & Luiz A. Barroso, 2011. "Electricity Auctions : An Overview of Efficient Practices," World Bank Publications - Books, The World Bank Group, number 2346, December.
    17. Cepeda, Mauricio & Finon, Dominique, 2013. "How to correct for long-term externalities of large-scale wind power development by a capacity mechanism?," Energy Policy, Elsevier, vol. 61(C), pages 671-685.
    18. Lohwasser, Richard & Madlener, Reinhard, 2009. "Simulation of the European Electricity Market and CCS Development with the HECTOR Model," FCN Working Papers 6/2009, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    19. del Río, Pablo & Linares, Pedro, 2014. "Back to the future? Rethinking auctions for renewable electricity support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 42-56.
    20. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Zhou, Kan & Wang, Ya-Fei, 2019. "A study on the spatial distribution of the renewable energy industries in China and their driving factors," Renewable Energy, Elsevier, vol. 139(C), pages 161-175.
    21. Petitet, Marie & Finon, Dominique & Janssen, Tanguy, 2017. "Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism," Energy Policy, Elsevier, vol. 103(C), pages 30-46.
    22. Welisch, Marijke & Poudineh, Rahmatallah, 2020. "Auctions for allocation of offshore wind contracts for difference in the UK," Renewable Energy, Elsevier, vol. 147(P1), pages 1266-1274.
    23. McAfee R. Preston & Vincent Daniel, 1993. "The Declining Price Anomaly," Journal of Economic Theory, Elsevier, vol. 60(1), pages 191-212, June.
    24. Anatolitis, Vasilios & Welisch, Marijke, 2017. "Putting renewable energy auctions into action – An agent-based model of onshore wind power auctions in Germany," Energy Policy, Elsevier, vol. 110(C), pages 394-402.
    25. Reinhard Madlener & Barbara Glensk & Lukas Gläsel, 2019. "Optimal Timing of Onshore Wind Repowering in Germany under Policy Regime Changes: A Real Options Analysis," Energies, MDPI, vol. 12(24), pages 1-33, December.
    26. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Evaluating the effectiveness of Australia's Small-scale Renewable Energy Scheme for rooftop solar," Energy Economics, Elsevier, vol. 84(C).
    27. Grashof, Katherina & Berkhout, Volker & Cernusko, Robert & Pfennig, Maximilian, 2020. "Long on promises, short on delivery? Insights from the first two years of onshore wind auctions in Germany," Energy Policy, Elsevier, vol. 140(C).
    28. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    29. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    30. Thomas D. Jeitschko, 1998. "Learning in Sequential Auctions," Southern Economic Journal, John Wiley & Sons, vol. 65(1), pages 98-112, July.
    31. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyekhha, Siamak & Borggrefe, Frieder & Madlener, Reinhard, 2019. "A Counterfactual Analysis of Regional Renewable Energy Auctions Taking the Spatial Dimension into Account," FCN Working Papers 22/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    3. Anatolitis, Vasilios & Azanbayev, Alina & Fleck, Ann-Katrin, 2022. "How to design efficient renewable energy auctions? Empirical insights from Europe," Energy Policy, Elsevier, vol. 166(C).
    4. Geßner, Daniel, 2023. "Performance of Renewable Energy Policies - Evidence from Germany's Transition to Auctions," W.E.P. - Würzburg Economic Papers 105, University of Würzburg, Department of Economics.
    5. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    6. Münch, Florian Anselm & Marian, Adela, 2022. "The design of technical requirements in public solar auctions: Evidence from India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    8. Bichler, Martin & Grimm, Veronika & Kretschmer, Sandra & Sutterer, Paul, 2020. "Market design for renewable energy auctions: An analysis of alternative auction formats," Energy Economics, Elsevier, vol. 92(C).
    9. Kitzing, Lena & Siddique, Muhammad Bilal & Nygaard, Ivan & Kruger, Wikus, 2022. "Worth the wait: How South Africa's renewable energy auctions perform compared to Europe's leading countries," Energy Policy, Elsevier, vol. 166(C).
    10. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    11. Matthäus, David, 2020. "Designing effective auctions for renewable energy support," Energy Policy, Elsevier, vol. 142(C).
    12. Batz Liñeiro, Taimyra & Müsgens, Felix, 2023. "Evaluating the German onshore wind auction programme: An analysis based on individual bids," Energy Policy, Elsevier, vol. 172(C).
    13. Côté, Elizabeth & Đukan, Mak & Pons-Seres de Brauwer, Cristian & Wüstenhagen, Rolf, 2022. "The price of actor diversity: Measuring project developers’ willingness to accept risks in renewable energy auctions," Energy Policy, Elsevier, vol. 163(C).
    14. Bose, A.S. & Sarkar, S., 2019. "India's e-reverse auctions (2017–2018) for allocating renewable energy capacity: An evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 762-774.
    15. Anatolitis, Vasilios & Welisch, Marijke, 2017. "Putting renewable energy auctions into action – An agent-based model of onshore wind power auctions in Germany," Energy Policy, Elsevier, vol. 110(C), pages 394-402.
    16. Kell, Nicholas P. & van der Weijde, Adriaan Hendrik & Li, Liang & Santibanez-Borda, Ernesto & Pillai, Ajit C., 2023. "Simulating offshore wind contract for difference auctions to prepare bid strategies," Applied Energy, Elsevier, vol. 334(C).
    17. Haufe, Marie-Christin & Ehrhart, Karl-Martin, 2018. "Auctions for renewable energy support – Suitability, design, and first lessons learned," Energy Policy, Elsevier, vol. 121(C), pages 217-224.
    18. Tolmasquim, Maurício T. & de Barros Correia, Tiago & Addas Porto, Natália & Kruger, Wikus, 2021. "Electricity market design and renewable energy auctions: The case of Brazil," Energy Policy, Elsevier, vol. 158(C).
    19. Davi-Arderius, Daniel & Trujillo-Baute, Elisa & del Río, Pablo, 2023. "Grid investment and subsidy tradeoffs in renewable electricity auctions," Utilities Policy, Elsevier, vol. 84(C).
    20. Cassetta, Ernesto & Monarca, Umberto & Nava, Consuelo Rubina & Meleo, Linda, 2017. "Is the answer blowin' in the wind (auctions)? An assessment of the Italian support scheme," Energy Policy, Elsevier, vol. 110(C), pages 662-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522003834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.