IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v158y2021ics0301421521004262.html
   My bibliography  Save this article

Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030

Author

Listed:
  • Nieto, Jaime
  • Pollitt, Hector
  • Brockway, Paul E.
  • Clements, Lucy
  • Sakai, Marco
  • Barrett, John

Abstract

For the period since 2011, the UK has been bound by European Union (EU) legislation regarding energy reduction targets to 2020. As of 2019, the UK had reduced its final energy use by 18% against a baseline projection to 2020, on track to meet its target of 18%. Whilst the rest of the EU-27 now set their own energy reduction targets to 2030, upon leaving the EU via Brexit, the UK is now free to choose its own energy targets. But what should the energy target be for 2030, and what are the socio-macroeconomic impacts and policy implications?

Suggested Citation

  • Nieto, Jaime & Pollitt, Hector & Brockway, Paul E. & Clements, Lucy & Sakai, Marco & Barrett, John, 2021. "Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030," Energy Policy, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004262
    DOI: 10.1016/j.enpol.2021.112556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521004262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    2. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    3. A G Haldane & A E Turrell, 2018. "An interdisciplinary model for macroeconomics," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 34(1-2), pages 219-251.
    4. Ayres, Robert U., 2007. "On the practical limits to substitution," Ecological Economics, Elsevier, vol. 61(1), pages 115-128, February.
    5. Jean-Francois Mercure & Florian Knobloch & Hector Pollitt & Leonidas Paroussos & S. Serban Scrieciu & Richard Lewney, 2019. "Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use," Climate Policy, Taylor & Francis Journals, vol. 19(8), pages 1019-1037, September.
    6. Nieto, Jaime & Carpintero, Óscar & Lobejón, Luis Fernando & Miguel, Luis Javier, 2020. "An ecological macroeconomics model: The energy transition in the EU," Energy Policy, Elsevier, vol. 145(C).
    7. Hector Pollitt & Jean-Francois Mercure, 2018. "The role of money and the financial sector in energy-economy models used for assessing climate and energy policy," Climate Policy, Taylor & Francis Journals, vol. 18(2), pages 184-197, February.
    8. J. E. King, 2015. "Advanced Introduction to Post Keynesian Economics," Books, Edward Elgar Publishing, number 15476.
    9. Owen, Anne & Scott, Kate & Barrett, John, 2018. "Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus," Applied Energy, Elsevier, vol. 210(C), pages 632-642.
    10. Paoli, Leonardo & Cullen, Jonathan, 2020. "Technical limits for energy conversion efficiency," Energy, Elsevier, vol. 192(C).
    11. Hendry, David F. & Pagan, Adrian R. & Sargan, J.Denis, 1984. "Dynamic specification," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 18, pages 1023-1100, Elsevier.
    12. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    13. Fukuda, Kenji, 2003. "Production of exergy from labour and energy resources," Applied Energy, Elsevier, vol. 76(4), pages 435-448, December.
    14. McLeay, Michael & Radia, Amar & Thomas, Ryland, 2014. "Money creation in the modern economy," Bank of England Quarterly Bulletin, Bank of England, vol. 54(1), pages 14-27.
    15. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    16. Christian Lutz & Bernd Meyer & Marc Ingo Wolter, 2010. "The global multisector/multicountry 3-E model GINFORS. A description of the model and a baseline forecast for global energy demand and CO 2 emissions," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 25-45.
    17. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    18. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    19. S. Scrieciu & A. Rezai & R. Mechler, 2013. "On the economic foundations of green growth discourses: the case of climate change mitigation and macroeconomic dynamics in economic modeling," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(3), pages 251-268, May.
    20. Kurt Kratena & Gerhard Streicher & Umed Temurshoev & Antonio F. Amores & Iñaki Arto & Ignazio Mongelli & Frederik Neuwahl & José-Manuel Rueda-Cantuche & Valeria Andreoni, 2013. "FIDELIO 1: Fully Interregional Dynamic Econometric Long-term Input-Output Model for the EU 27," WIFO Studies, WIFO, number 46816, April.
    21. Groscurth, H.-M. & Kümmel, R. & Van Gool, W., 1989. "Thermodynamic limits to energy optimization," Energy, Elsevier, vol. 14(5), pages 241-258.
    22. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    2. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.
    3. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    4. Hector Pollitt & Karsten Neuhoff & Xinru Lin, 2020. "The impact of implementing a consumption charge on carbon-intensive materials in Europe," Climate Policy, Taylor & Francis Journals, vol. 20(S1), pages 74-89, April.
    5. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    6. Zoi Vrontisi & Ioannis Charalampidis & Ulrike Lehr & Mark Meyer & Leonidas Paroussos & Christian Lutz & Yen E. Lam-González & Anastasia Arabadzhyan & Matías M. González & Carmelo J. León, 2022. "Macroeconomic impacts of climate change on the Blue Economy sectors of southern European islands," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    7. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    8. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    10. Nieto, Jaime & Carpintero, Óscar & Lobejón, Luis Fernando & Miguel, Luis Javier, 2020. "An ecological macroeconomics model: The energy transition in the EU," Energy Policy, Elsevier, vol. 145(C).
    11. Jaime Nieto & Pedro B. Moyano & Diego Moyano & Luis Javier Miguel, 2023. "Is energy intensity a driver of structural change? Empirical evidence from the global economy," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 283-296, February.
    12. Camila Gramkow & Annela Anger-Kraavi, 2019. "Developing Green: A Case for the Brazilian Manufacturing Industry," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    13. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    14. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    15. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    16. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    17. Ramis Khabibullin & Alexey Ponomarenko & Sergei Seleznev, 2018. "Forecasting the implications of foreign exchange reserve accumulation with an agent-based model," Bank of Russia Working Paper Series wps37, Bank of Russia.
    18. Gunnar Bårdsen & Kjersti-Gro Lindquist & Dimitrios P. Tsomocos, 2012. "Evaluation of Macroeconomic Models for Financial Stability Analysis," Chapters, in: The Challenge of Financial Stability, chapter 3, pages 32-58, Edward Elgar Publishing.
    19. Ericsson, Neil R., 1992. "Cointegration, exogeneity, and policy analysis: An overview," Journal of Policy Modeling, Elsevier, vol. 14(3), pages 251-280, June.
    20. repec:zbw:bofrdp:2018_022 is not listed on IDEAS
    21. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.