IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp632-642.html
   My bibliography  Save this article

Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus

Author

Listed:
  • Owen, Anne
  • Scott, Kate
  • Barrett, John

Abstract

Recent advances in detailed multiregional input-output databases offers new opportunities to use these environmental accounting tools to explore the interrelationships between energy, water and food–the energy-water-food nexus. This paper takes the UK asa case study and calculates energy, water and food consumption-based accounts for 1997–2013. Policies, designed to reduce the environmental impact of consumption of products, can intervene at many stages in a product’s whole life-time from ‘cradle to gate’. We use input-output analysis techniques to investigate the interaction between the energy, water and food impacts of products at different points along their supply chains, from the extraction of material and burning of energy, to the point of final consumption. We identify the twenty most important final products whose large energy, water and food impacts could be captured by various demand-side strategies such as reducing food waste or dietary changes. We then use structural-path analysis to calculate the twenty most important supply chains whose impact could be captured by resource efficiency policies which act at the point of extraction and during the manufacturing process. Finally, we recognise that strategies that aim to reduce environmental impacts should not harm the socioeconomic well-being of the UK and her trade partners and suggest that pathways should be targeted where the employment and value added dependencies are relatively low.

Suggested Citation

  • Owen, Anne & Scott, Kate & Barrett, John, 2018. "Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus," Applied Energy, Elsevier, vol. 210(C), pages 632-642.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:632-642
    DOI: 10.1016/j.apenergy.2017.09.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    2. Tukker, Arnold & Poliakov, Evgueni & Heijungs, Reinout & Hawkins, Troy & Neuwahl, Frederik & Rueda-Cantuche, José M. & Giljum, Stefan & Moll, Stephan & Oosterhaven, Jan & Bouwmeester, Maaike, 2009. "Towards a global multi-regional environmentally extended input-output database," Ecological Economics, Elsevier, vol. 68(7), pages 1928-1937, May.
    3. Olav Bjerkholt & Heinz Kurz, 2006. "Introduction: the History of Input-Output Analysis, Leontief's Path and Alternative Tracks," Economic Systems Research, Taylor & Francis Journals, vol. 18(4), pages 331-333.
    4. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    5. ., 2014. "Supply-side incentives for individuals," Chapters, in: Confronting the Shadow Economy, chapter 8, pages iii-iii, Edward Elgar Publishing.
    6. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    7. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    8. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    9. Kevin D Hall & Juen Guo & Michael Dore & Carson C Chow, 2009. "The Progressive Increase of Food Waste in America and Its Environmental Impact," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-6, November.
    10. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    11. Manfred Lenzen & Richard Wood & Thomas Wiedmann, 2010. "Uncertainty Analysis For Multi-Region Input-Output Models - A Case Study Of The Uk'S Carbon Footprint," Economic Systems Research, Taylor & Francis Journals, vol. 22(1), pages 43-63.
    12. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    13. Howarth, Candice & Monasterolo, Irene, 2016. "Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches," Environmental Science & Policy, Elsevier, vol. 61(C), pages 53-60.
    14. ., 2014. "Supply-side incentives for businesses," Chapters, in: Confronting the Shadow Economy, chapter 7, pages iii-iii, Edward Elgar Publishing.
    15. Sharmina, Maria & Hoolohan, Claire & Bows-Larkin, Alice & Burgess, Paul J. & Colwill, James & Gilbert, Paul & Howard, David & Knox, Jerry & Anderson, Kevin, 2016. "A nexus perspective on competing land demands: Wider lessons from a UK policy case study," Environmental Science & Policy, Elsevier, vol. 59(C), pages 74-84.
    16. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    17. Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
    18. Satoshi Inomata & Anne Owen, 2014. "Comparative Evaluation Of Mrio Databases," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 239-244, September.
    19. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    20. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    2. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    3. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    4. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    5. Dorninger, Christian & Hornborg, Alf & Abson, David J. & von Wehrden, Henrik & Schaffartzik, Anke & Giljum, Stefan & Engler, John-Oliver & Feller, Robert L. & Hubacek, Klaus & Wieland, Hanspeter, 2021. "Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century," Ecological Economics, Elsevier, vol. 179(C).
    6. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    7. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    8. Bruno Casella & Richard Bolwijn & Daniel Moran & Keiichiro Kanemoto, . "Improving the analysis of global value chains: the UNCTAD-Eora Database," UNCTAD Transnational Corporations Journal, United Nations Conference on Trade and Development.
    9. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    10. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    11. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    12. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    13. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    14. Yafei Wang & Arne Geschke & Manfred Lenzen, 2017. "Constructing a Time Series of Nested Multiregion Input–Output Tables," International Regional Science Review, , vol. 40(5), pages 476-499, September.
    15. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
    16. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    17. Jingwen Huo & Peipei Chen & Klaus Hubacek & Heran Zheng & Jing Meng & Dabo Guan, 2022. "Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING)," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1218-1232, August.
    18. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    19. Ren, Bo & Li, Huajiao & Shi, Jianglan & Ma, Ning & Qi, Yajie, 2022. "Detecting the control and dependence relationships within the global embodied energy trade network," Energy, Elsevier, vol. 238(PB).
    20. Anne Owen & Kjartan Steen-Olsen & John Barrett & Thomas Wiedmann & Manfred Lenzen, 2014. "A Structural Decomposition Approach To Comparing Mrio Databases," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 262-283, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:632-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.