IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v143y2020ics030142152030344x.html
   My bibliography  Save this article

Towards zero vehicle emissions in Africa: A case study of Ghana

Author

Listed:
  • Ayetor, G.K.
  • Quansah, David A.
  • Adjei, Eunice A.

Abstract

This paper reviews vehicle standards in Ghana and other parts of Africa. The paper also considers the cost of ownership of electric vehicles in Ghana. Tesla Model 3, Tesla Model S, Nissan Leaf and Toyota Prius are compared to Toyota Corolla. The parameters considered are initial cost, maintenance cost (spare parts and labour), fuel cost, and availability of skilled labour. Considering Ghana's energy mix, a conventional vehicle will emit 3.35 times more CO2 emissions compared with an electric vehicle. The results show that while there are 30% savings on cost per mile for Toyota Prius it cost at least 13.5% more to own an electric vehicle compared to Toyota Corolla. The Ghana government's tax incentive for removing import levy will only reduce the cost per mile by 2.5%. Ghana's energy surplus of 98.59 GWh is enough to charge at least 1.5 million electric vehicles. But a huge skills gap in electric vehicle maintenance, non-availability of spare parts, charging infrastructure and the initial price of electric cars are the main challenges to overcome to boost electric vehicle penetration in Ghana and other countries in Africa.

Suggested Citation

  • Ayetor, G.K. & Quansah, David A. & Adjei, Eunice A., 2020. "Towards zero vehicle emissions in Africa: A case study of Ghana," Energy Policy, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:enepol:v:143:y:2020:i:c:s030142152030344x
    DOI: 10.1016/j.enpol.2020.111606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152030344X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pillay, N.S. & Brent, A.C. & Musango, J.K., 2019. "Affordability of battery electric vehicles based on disposable income and the impact on provincial residential electricity requirements in South Africa," Energy, Elsevier, vol. 171(C), pages 1077-1087.
    2. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    3. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    4. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    5. Black Anthony & McLennan Thomas & Makundi Brian, 2017. "Working Paper 282 - Africa’s Automotive Industry Potential and Challenges," Working Paper Series 2412, African Development Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    2. Wang, Jie & He, Ya-qun & Wang, Heng-guang & Wu, Ru-fei, 2023. "Low-carbon promotion of new energy vehicles: A quadrilateral evolutionary game," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
    4. Shen, Wei & Ayele, Seife & Worako, Tadesse Kuma, 2023. "The political economy of green industrial policy in Africa: Unpacking the coordination challenges in Ethiopia," Energy Policy, Elsevier, vol. 179(C).
    5. Ayetor, G.K. & Mbonigaba, Innocent & Sunnu, Albert K. & Nyantekyi-Kwakye, Baafour, 2021. "Impact of replacing ICE bus fleet with electric bus fleet in Africa: A lifetime assessment," Energy, Elsevier, vol. 221(C).
    6. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    2. Robert J.R. Elliott & Viet Nguyen-Tien & Eric Strobl & Chengyu Zhang, 2024. "Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?," CEP Discussion Papers dp1972, Centre for Economic Performance, LSE.
    3. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    4. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    5. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    6. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    7. Hyoung Jun Kim & Su Jung Jee & So Young Sohn, 2021. "Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    8. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    9. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    10. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2021. "Sharing economy of electric vehicle private charge posts," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 258-275.
    11. Andri Ottesen & Sumayya Banna & Basil Alzougool, 2022. "Attitudes of Drivers towards Electric Vehicles in Kuwait," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    12. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    13. Yanhua Liang & Hongjuan Lu, 2022. "Dynamic Evaluation and Regional Differences Analysis of the NEV Industry Development in China," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    14. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    15. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    16. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    17. Jan Engelhardt & Jan Martin Zepter & Tatiana Gabderakhmanova & Gunnar Rohde & Mattia Marinelli, 2021. "Double-String Battery System with Reconfigurable Cell Topology Operated as a Fast Charging Station for Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-19, April.
    18. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    19. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    20. Marina Siebenhofer & Amela Ajanovic & Reinhard Haas, 2021. "How Policies Affect the Dissemination of Electric Passenger Cars Worldwide," Energies, MDPI, vol. 14(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:143:y:2020:i:c:s030142152030344x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.