IDEAS home Printed from https://ideas.repec.org/p/cep/cepdps/dp1972.html
   My bibliography  Save this paper

Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?

Author

Listed:
  • Robert J.R. Elliott
  • Viet Nguyen-Tien
  • Eric Strobl
  • Chengyu Zhang

Abstract

Knowing how long the average vehicle remains roadworthy before being scrapped is a crucial input into life cycle assessment (LCA) and total cost of ownership (TCO) studies of different vehicle powertrains. This study leverages a dataset of over 300 million MOT records from 2005 to 2022 for over 30 million vehicles registered in Great Britain and uses parametric survival analysis with interval-censored data to examine the longevity of various powertrains under real usage conditions. Our findings reveal that (plugin) hybrid electric vehicles have the longest expected longevity in terms of years and mileage, both of which are about 50% higher than those of an average fleet vehicle. Battery electric vehicles (BEVs), while initially showing lower reliability, have benefited from rapid technological improvements such that the latest BEVs in our sample match the lifespan of petrol vehicles despite being used more intensively. Longevity is also impacted by engine size, location, and make of vehicle. The results provide parameter estimates that can be used to update TCO and LCA models and also shed light on EV diffusion patterns, fleet replacement strategies, and end-of-life treatment planning, including the increasingly important debate around EV battery recycling and second-life options.

Suggested Citation

  • Robert J.R. Elliott & Viet Nguyen-Tien & Eric Strobl & Chengyu Zhang, 2024. "Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?," CEP Discussion Papers dp1972, Centre for Economic Performance, LSE.
  • Handle: RePEc:cep:cepdps:dp1972
    as

    Download full text from publisher

    File URL: https://cep.lse.ac.uk/pubs/download/dp1972.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    2. Kun Xie & Kaan Ozbay & Hong Yang & Di Yang, 2019. "A New Methodology for Before–After Safety Assessment Using Survival Analysis and Longitudinal Data," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1342-1357, June.
    3. Erich J. Muehlegger & David S. Rapson, 2023. "Correcting Estimates of Electric Vehicle Emissions Abatement: Implications for Climate Policy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 263-282.
    4. Clinton, Bentley C. & Steinberg, Daniel C., 2019. "Providing the Spark: Impact of financial incentives on battery electric vehicle adoption," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    5. Shanjun Li & Youming Liu & Chao Wei, 2022. "The Cost Of Greening Stimulus: A Dynamic Analysis Of Vehicle Scrappage Programs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1561-1594, November.
    6. Gruenspecht, Howard K, 1982. "Differentiated Regulation: The Case of Auto Emissions Standards," American Economic Review, American Economic Association, vol. 72(2), pages 328-331, May.
    7. Mark R. Jacobsen & Arthur A. van Benthem, 2015. "Vehicle Scrappage and Gasoline Policy," American Economic Review, American Economic Association, vol. 105(3), pages 1312-1338, March.
    8. Alberini, Anna & Bareit, Markus & Filippini, Massimo & Martinez-Cruz, Adan L., 2018. "The impact of emissions-based taxes on the retirement of used and inefficient vehicles: The case of Switzerland," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 234-258.
    9. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    10. Goulder, Lawrence H. & Jacobsen, Mark R. & van Benthem, Arthur A., 2012. "Unintended consequences from nested state and federal regulations: The case of the Pavley greenhouse-gas-per-mile limits," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 187-207.
    11. Rashidi, Taha Hossein & Mohammadian, Abolfazl (Kouros), 2011. "A dynamic hazard-based system of equations of vehicle ownership with endogenous long-term decision factors incorporating group decision making," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1072-1080.
    12. Kun Xie & Kaan Ozbay & Abdullah Kurkcu & Hong Yang, 2017. "Analysis of Traffic Crashes Involving Pedestrians Using Big Data: Investigation of Contributing Factors and Identification of Hotspots," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1459-1476, August.
    13. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    14. Jong, Gerard De, 1996. "A disaggregate model system of vehicle holding duration, type choice and use," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 263-276, August.
    15. Yamamoto, Toshiyuki & Madre, Jean-Loup & Kitamura, Ryuichi, 2004. "An analysis of the effects of French vehicle inspection program and grant for scrappage on household vehicle transaction," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 905-926, December.
    16. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    17. Parks, Richard W, 1977. "Determinants of Scrapping Rates for Postwar Vintage Automobiles," Econometrica, Econometric Society, vol. 45(5), pages 1099-1115, July.
    18. Shaun Hargreaves Heap & Oleksandr Talavera, 2019. "Street-level bureaucracy: best to be grey (or silver) on Friday, in Halifax," Discussion Papers 19-02, Department of Economics, University of Birmingham.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    2. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    3. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    4. Alberini, Anna & Bareit, Markus & Filippini, Massimo & Martinez-Cruz, Adan L., 2018. "The impact of emissions-based taxes on the retirement of used and inefficient vehicles: The case of Switzerland," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 234-258.
    5. Nathan Delacrétaz & Bruno Lanz & Jeremy van Dijk, 2020. "The chicken or the egg: Technology adoption and network infrastructure in the market for electric vehicles," IRENE Working Papers 20-08, IRENE Institute of Economic Research.
    6. Greene, David L. & Greenwald, Judith M. & Ciez, Rebecca E., 2020. "U.S. fuel economy and greenhouse gas standards: What have they achieved and what have we learned?," Energy Policy, Elsevier, vol. 146(C).
    7. Matsumoto, Shigeru & Iwata, Kazuyuki, 2019. "Do environmental rebates affect the replacement of durable products? An analysis of vehicle ownership duration in Japan," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 64-72.
    8. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    9. Carley, Sanya & Zirogiannis, Nikolaos & Siddiki, Saba & Duncan, Denvil & Graham, John D., 2019. "Overcoming the shortcomings of U.S. plug-in electric vehicle policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Li, Ping & Zhang, ZhongXiang, 2023. "The effects of new energy vehicle subsidies on air quality: Evidence from China," Energy Economics, Elsevier, vol. 120(C).
    11. Peter Haan & Adrián Santonja & Aleksandar Zaklan, 2023. "Effectiveness and Heterogeneous Effects of Purchase Grants for Electric Vehicles," Discussion Papers of DIW Berlin 2032, DIW Berlin, German Institute for Economic Research.
    12. Linn, Joshua & McConnell, Virginia, 2019. "Interactions between federal and state policies for reducing vehicle emissions," Energy Policy, Elsevier, vol. 126(C), pages 507-517.
    13. Jeremy Dijk & Nathan Delacrétaz & Bruno Lanz, 2022. "Technology Adoption and Early Network Infrastructure Provision in the Market for Electric Vehicles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 631-679, November.
    14. Isis Durrmeyer, 2021. "Winners and Losers: The Distributional Effects of the French Feebate on the Automobile Market," Post-Print hal-03514846, HAL.
    15. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    16. Leard, Benjamin & Wu, Yidi, 2023. "New Passenger Vehicle Demand Elasticities: Estimates and Policy Implications," RFF Working Paper Series 23-33, Resources for the Future.
    17. Callejas, Jerónimo & Linn,Joshua Abraham & Steinbuks,Jevgenijs, 2022. "Welfare and Environmental Benefits of Electric Vehicle Tax Policies in DevelopingCountries : Evidence from Colombia," Policy Research Working Paper Series 10001, The World Bank.
    18. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
    19. Zunian Luo, 2022. "Cap or No Cap? What Can Governments Do to Promote EV Sales?," Papers 2212.08137, arXiv.org.
    20. Isaksen, Elisabeth & Johansen, Bjørn G., 2021. "Congestion pricing, air pollution, and individual-level behavioural responses," LSE Research Online Documents on Economics 111493, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    electric vehicles; survival analysis; total cost of ownership; life cycle assessment;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:cepdps:dp1972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://cep.lse.ac.uk/_new/publications/discussion-papers/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.