IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v135y2019ics0301421519305749.html
   My bibliography  Save this article

Acceptance of biogas plants taking into account space and place

Author

Listed:
  • Dobers, Geesche M.

Abstract

As part of Germany's energy transition, enormous efforts are being made to transform the German energy supply to renewable energies. While much of the energy supply from renewables is wind and solar power, biogas contributes on third position a considerable share due to substantial state subsidies. The transformation to renewable energies leads to notable landscape changes that should be taken into consideration when studying the acceptance of renewable energy plants. We do this by adding spatial information to data from an online survey (N = 942) questioning the acceptance of biogas plants. The density of and proximity to existing biogas plants as well as the intensity of maize cultivation in the vicinity of respondents is integrated into the analysis together with more conventional influencing factors such as place attachment and attitudes. Results show that attitudes have the strongest explanatory power but spatial variables, particularly maize intensity, contribute significantly, too. Place attachment does not show reliable effects. The results demonstrate that spatial data can be useful in the analysis of survey data, for instance, in an environmental context. They also show that diversification of the raw materials used for fermentation in biogas plants might be an important factor in improving their acceptance.

Suggested Citation

  • Dobers, Geesche M., 2019. "Acceptance of biogas plants taking into account space and place," Energy Policy, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:enepol:v:135:y:2019:i:c:s0301421519305749
    DOI: 10.1016/j.enpol.2019.110987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ladenburg, Jacob & Möller, Bernd, 2011. "Attitude and acceptance of offshore wind farms—The influence of travel time and wind farm attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4223-4235.
    2. Mueller, Christoph Emanuel, 2019. "Effects of spatial proximity to proposed electric power lines on residents' expectations, attitudes, and protest behavior: A replication study," Energy Policy, Elsevier, vol. 130(C), pages 341-346.
    3. Charlotte von Möllendorff & Heinz Welsch, 2017. "Measuring Renewable Energy Externalities: Evidence from Subjective Well-being Data," Land Economics, University of Wisconsin Press, vol. 93(1), pages 109-126.
    4. Zemo, Kahsay Haile & Panduro, Toke Emil & Termansen, Mette, 2019. "Impact of biogas plants on rural residential property values and implications for local acceptance," Energy Policy, Elsevier, vol. 129(C), pages 1121-1131.
    5. Clarke, Christopher E. & Bugden, Dylan & Hart, P. Sol & Stedman, Richard C. & Jacquet, Jeffrey B. & Evensen, Darrick T.N. & Boudet, Hilary S., 2016. "How geographic distance and political ideology interact to influence public perception of unconventional oil/natural gas development," Energy Policy, Elsevier, vol. 97(C), pages 301-309.
    6. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    7. Meyerhoff, Jürgen, 2013. "Do turbines in the vicinity of respondents' residences influence choices among programmes for future wind power generation?," Journal of choice modelling, Elsevier, vol. 7(C), pages 58-71.
    8. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    9. Kortsch, Timo & Hildebrand, Jan & Schweizer-Ries, Petra, 2015. "Acceptance of biomass plants – Results of a longitudinal study in the bioenergy-region Altmark," Renewable Energy, Elsevier, vol. 83(C), pages 690-697.
    10. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    11. Jacquet, Jeffrey B., 2012. "Landowner attitudes toward natural gas and wind farm development in northern Pennsylvania," Energy Policy, Elsevier, vol. 50(C), pages 677-688.
    12. Michael F. Goodchild & Luc Anselin & Richard P. Appelbaum & Barbara Herr Harthorn, 2000. "Toward Spatially Integrated Social Science," International Regional Science Review, , vol. 23(2), pages 139-159, April.
    13. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2017. "Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony," Energy Policy, Elsevier, vol. 111(C), pages 137-147.
    14. Soland, Martin & Steimer, Nora & Walter, Götz, 2013. "Local acceptance of existing biogas plants in Switzerland," Energy Policy, Elsevier, vol. 61(C), pages 802-810.
    15. Ek, Kristina, 2005. "Public and private attitudes towards "green" electricity: the case of Swedish wind power," Energy Policy, Elsevier, vol. 33(13), pages 1677-1689, September.
    16. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    17. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    18. Modica, Marco, 2017. "Does the construction of biogas plants affect local property values?," Economics Letters, Elsevier, vol. 159(C), pages 169-172.
    19. Baxter, Jamie & Morzaria, Rakhee & Hirsch, Rachel, 2013. "A case-control study of support/opposition to wind turbines: Perceptions of health risk, economic benefits, and community conflict," Energy Policy, Elsevier, vol. 61(C), pages 931-943.
    20. Swofford, Jeffrey & Slattery, Michael, 2010. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making," Energy Policy, Elsevier, vol. 38(5), pages 2508-2519, May.
    21. Schweizer-Ries, Petra, 2008. "Energy sustainable communities: Environmental psychological investigations," Energy Policy, Elsevier, vol. 36(11), pages 4126-4135, November.
    22. Liebe, Ulf & Bartczak, Anna & Meyerhoff, Jürgen, 2017. "A turbine is not only a turbine: The role of social context and fairness characteristics for the local acceptance of wind power," Energy Policy, Elsevier, vol. 107(C), pages 300-308.
    23. Ladenburg, Jacob, 2008. "Attitudes towards on-land and offshore wind power development in Denmark; choice of development strategy," Renewable Energy, Elsevier, vol. 33(1), pages 111-118.
    24. Gravelle, Timothy B. & Lachapelle, Erick, 2015. "Politics, proximity and the pipeline: Mapping public attitudes toward Keystone XL," Energy Policy, Elsevier, vol. 83(C), pages 99-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    2. Mathilde van Dijk & Annet-Jantien Smit & Jan-Peter Nap, 2023. "Message Framing and Attitudes Toward Green Gas Facilities in Rural Communities of The Netherlands," SAGE Open, , vol. 13(3), pages 21582440231, September.
    3. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    5. Christian Krekel & Julia Rechlitz & Johannes Rode & Alexander Zerrahn, 2020. "Quantifying the externalities of renewable energy plants using wellbeing data: The case of biogas," CEP Discussion Papers dp1738, Centre for Economic Performance, LSE.
    6. Matevž Zupančič & Valerija Možic & Matic Može & Franc Cimerman & Iztok Golobič, 2022. "Current Status and Review of Waste-to-Biogas Conversion for Selected European Countries and Worldwide," Sustainability, MDPI, vol. 14(3), pages 1-25, February.
    7. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    8. Mark Booker Nielsen, 2022. "Identifying Challenges and Drivers for Deployment of Centralized Biogas Plants in Denmark," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
    9. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    10. Massimiliano Mazzanti & Marco Modica & Andrea Rampa, 2021. "The Biogas dilemma: an analysis on the Social Approval of large new plants," SEEDS Working Papers 0221, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    11. Stanislav Martinát & Justyna Chodkowska-Miszczuk & Marián Kulla & Josef Navrátil & Petr Klusáček & Petr Dvořák & Ladislav Novotný & Tomáš Krejčí & Loránt Pregi & Jakub Trojan & Bohumil Frantál, 2022. "Best Practice Forever? Dynamics behind the Perception of Farm-Fed Anaerobic Digestion Plants in Rural Peripheries," Energies, MDPI, vol. 15(7), pages 1-17, March.
    12. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    13. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    2. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    3. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    4. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Acceptance of national wind power development and exposure. A case-control choice experiment approach," Discussion Papers 933, Statistics Norway, Research Department.
    5. Gonyo, Sarah Ball & Fleming, Chloe S. & Freitag, Amy & Goedeke, Theresa L., 2021. "Resident perceptions of local offshore wind energy development: Modeling efforts to improve participatory processes," Energy Policy, Elsevier, vol. 149(C).
    6. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    7. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    8. Krekel, Christian & Rechlitz, Julia & Rode, Johannes & Zerrahn, Alexander, 2020. "Quantifying the Externalities of Renewable Energy Plants Using Wellbeing Data: The Case of Biogas," IZA Discussion Papers 13959, Institute of Labor Economics (IZA).
    9. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.
    10. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.
    11. Zemo, Kahsay Haile & Panduro, Toke Emil & Termansen, Mette, 2019. "Impact of biogas plants on rural residential property values and implications for local acceptance," Energy Policy, Elsevier, vol. 129(C), pages 1121-1131.
    12. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2017. "Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony," Energy Policy, Elsevier, vol. 111(C), pages 137-147.
    13. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    14. Stanislav Martinát & Justyna Chodkowska-Miszczuk & Marián Kulla & Josef Navrátil & Petr Klusáček & Petr Dvořák & Ladislav Novotný & Tomáš Krejčí & Loránt Pregi & Jakub Trojan & Bohumil Frantál, 2022. "Best Practice Forever? Dynamics behind the Perception of Farm-Fed Anaerobic Digestion Plants in Rural Peripheries," Energies, MDPI, vol. 15(7), pages 1-17, March.
    15. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    16. Bidwell, David, 2013. "The role of values in public beliefs and attitudes towards commercial wind energy," Energy Policy, Elsevier, vol. 58(C), pages 189-199.
    17. Jason Harold, Valentin Bertsch, Thomas Lawrence, and Magie Hall, 2021. "Drivers of People's Preferences for Spatial Proximity to Energy Infrastructure Technologies: A Cross-country Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    18. Janhunen, Sari & Hujala, Maija & Pätäri, Satu, 2014. "Owners of second homes, locals and their attitudes towards future rural wind farm," Energy Policy, Elsevier, vol. 73(C), pages 450-460.
    19. Ladenburg, Jacob & Termansen, Mette & Hasler, Berit, 2013. "Assessing acceptability of two onshore wind power development schemes: A test of viewshed effects and the cumulative effects of wind turbines," Energy, Elsevier, vol. 54(C), pages 45-54.
    20. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:135:y:2019:i:c:s0301421519305749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.