IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519305300.html
   My bibliography  Save this article

Energy access in informal settlements. Results of a wide on site survey in Rio De Janeiro

Author

Listed:
  • Butera, Federico Maria
  • Caputo, Paola
  • Adhikari, Rajendra Singh
  • Mele, Renata

Abstract

This paper presents the results of a survey on two informal settlements in Rio De Janeiro: Reta Velha (Itaboraí) and Jardim Bom Retiro (São Gonçalo). A detailed analysis of energy access and energy poverty level has been accomplished by questionnaires carried out in 400 households. The questionnaire was based on a detailed multi-tier approach. It was aimed at exploring the actual energy access and energy poverty in favelas, in addition to draw the local living conditions and the availability of the basic services. The outcomes of the research underline the problem of outages and low tension, and illegal connections. Furthermore, electricity consumption is very high compared to the service provided, and expenditures are generally disproportioned to the households’ income. Many interesting outcomes emerge from the survey. Referring to energy poverty, it is a status in which 50% of households are in Jardim Bom Retiro and 20% in Reta Velha. Due to the representativeness of the treated case, the results permit the definition of the state of the art and of enhancing guidelines suitable also for other contexts, at least in the universe of informal settlements in Latin America and Caribbean.

Suggested Citation

  • Butera, Federico Maria & Caputo, Paola & Adhikari, Rajendra Singh & Mele, Renata, 2019. "Energy access in informal settlements. Results of a wide on site survey in Rio De Janeiro," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305300
    DOI: 10.1016/j.enpol.2019.110943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K., 2018. "Success and failure in the political economy of solar electrification: Lessons from World Bank Solar Home System (SHS) projects in Sri Lanka and Indonesia," Energy Policy, Elsevier, vol. 123(C), pages 482-493.
    2. Niu, Shuwen & Jia, Yanqin & Ye, Liqiong & Dai, Runqi & Li, Na, 2016. "Does electricity consumption improve residential living status in less developed regions? An empirical analysis using the quantile regression approach," Energy, Elsevier, vol. 95(C), pages 550-560.
    3. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Niu, Yunzhu, 2012. "Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China," Energy Policy, Elsevier, vol. 49(C), pages 515-527.
    4. Al-Sumaiti, Ameena Saad & Salama, Magdy M.A. & El-Moursi, Mohamed, 2017. "Enabling electricity access in developing countries: A probabilistic weather driven house based approach," Applied Energy, Elsevier, vol. 191(C), pages 531-548.
    5. Mimmi, Luisa M. & Ecer, Sencer, 2010. "An econometric study of illegal electricity connections in the urban favelas of Belo Horizonte, Brazil," Energy Policy, Elsevier, vol. 38(9), pages 5081-5097, September.
    6. Bhattacharyya, Subhes C., 2006. "Energy access problem of the poor in India: Is rural electrification a remedy?," Energy Policy, Elsevier, vol. 34(18), pages 3387-3397, December.
    7. de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.
    8. Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
    9. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assed Haddad & Ahmed Hammad & Danielle Castro & Diego Vasco & Carlos Alberto Pereira Soares, 2021. "Framework for Assessing Urban Energy Sustainability," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    2. Isabelo Rabuya & Melissa Libres & Michael Lochinvar Abundo & Evelyn Taboada, 2021. "Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids," Energies, MDPI, vol. 14(12), pages 1-32, June.
    3. Mohsin, Muhammad & Taghizadeh-Hesary, Farhad & Shahbaz, Muhammad, 2022. "Nexus between financial development and energy poverty in Latin America," Energy Policy, Elsevier, vol. 165(C).
    4. Diego Seuret-Jimenez & Tiare Robles-Bonilla & Karla G. Cedano, 2020. "Measurement of Energy Access Using Fuzzy Logic," Energies, MDPI, vol. 13(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    2. Tooraj Jamasb & Rabindra Nepal & Govinda Timilsina & Michael Toman, 2014. "Energy Sector Reform, Economic Efficiency and Poverty Reduction," Discussion Papers Series 529, School of Economics, University of Queensland, Australia.
    3. Imam, Mahmud I. & Jamasb, Tooraj & Llorca, Manuel, 2019. "Sector reforms and institutional corruption: Evidence from electricity industry in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 129(C), pages 532-545.
    4. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    5. Jamasb,Tooraj & Nepal,Rabindra & Timilsina,Govinda R., 2015. "A quarter century effort yet to come of age : a survey of power sector reforms in developing countries," Policy Research Working Paper Series 7330, The World Bank.
    6. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    7. Mahmud I Imam & Tooraj Jamasb & Manuel Llorca, 2019. "Political Economy of Reform and Regulation in the Electricity Sector of Sub-Saharan Africa," Working Papers EPRG1917, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. A. Talha Yalta, 2013. "The Dynamics of Road Energy Demand and Illegal Fuel Activity in Turkey: A Rolling Window Analysis," Working Papers 1304, TOBB University of Economics and Technology, Department of Economics, revised Jul 2013.
    9. Yalta, A. Talha & Yalta, A. Yasemin, 2016. "The dynamics of fuel demand and illegal fuel activity in Turkey," Energy Economics, Elsevier, vol. 54(C), pages 144-158.
    10. Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.
    11. Aldo Gutiérrez Mendieta, 2016. "Determinantes de consumo eficiente de energía eléctrica en el sector residencial en México: un enfoque de regresión cuantílica," Graduate theses (Spanish) TESG 010, CIDE, División de Economía.
    12. Wang, Yuanping & Hou, Lingchun & Hu, Lang & Cai, Weiguang & Wang, Lin & Dai, Cuilian & Chen, Juntao, 2023. "How family structure type affects household energy consumption: A heterogeneous study based on Chinese household evidence," Energy, Elsevier, vol. 284(C).
    13. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    14. Parikh, Priti & Chaturvedi, Sankalp & George, Gerard, 2012. "Empowering change: The effects of energy provision on individual aspirations in slum communities," Energy Policy, Elsevier, vol. 50(C), pages 477-485.
    15. Yakubu, Osman & Babu C., Narendra & Adjei, Osei, 2018. "Electricity theft: Analysis of the underlying contributory factors in Ghana," Energy Policy, Elsevier, vol. 123(C), pages 611-618.
    16. Tooraj Jamasb & Rabindra Nepal & Govinda R. Timilsina, 2017. "A Quarter Century Effort Yet to Come of Age: A Survey of Electricity Sector Reform in Developing Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Adongo, Charles Atanga & Taale, Francis & Bukari, Shaibu & Suleman, Shafic & Amadu, Iddrisu, 2021. "Electricity theft whistleblowing feasibility in commercial accommodation facilities," Energy Policy, Elsevier, vol. 155(C).
    18. Fernando de Souza Savian & Julio Cezar Mairesse Siluk & Tai s Bisognin Garlet & Felipe Moraes do Nascimento & Jose Renes Pinheiro & Zita Vale, 2022. "Non-technical Losses in Brazil: Overview, Challenges, and Directions for Identification and Mitigation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 93-107, May.
    19. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    20. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.