IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3310-d261598.html
   My bibliography  Save this article

Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach

Author

Listed:
  • Md. Nazmul Hasan

    (Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh)

  • Rafia Nishat Toma

    (Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh)

  • Abdullah-Al Nahid

    (Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh)

  • M M Manjurul Islam

    (School of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, South Korea)

  • Jong-Myon Kim

    (School of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, South Korea)

Abstract

Among an electricity provider’s non-technical losses, electricity theft has the most severe and dangerous effects. Fraudulent electricity consumption decreases the supply quality, increases generation load, causes legitimate consumers to pay excessive electricity bills, and affects the overall economy. The adaptation of smart grids can significantly reduce this loss through data analysis techniques. The smart grid infrastructure generates a massive amount of data, including the power consumption of individual users. Utilizing this data, machine learning and deep learning techniques can accurately identify electricity theft users. In this paper, an electricity theft detection system is proposed based on a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) architecture. CNN is a widely used technique that automates feature extraction and the classification process. Since the power consumption signature is time-series data, we were led to build a CNN-based LSTM (CNN-LSTM) model for smart grid data classification. In this work, a novel data pre-processing algorithm was also implemented to compute the missing instances in the dataset, based on the local values relative to the missing data point. Furthermore, in this dataset, the count of electricity theft users was relatively low, which could have made the model inefficient at identifying theft users. This class imbalance scenario was addressed through synthetic data generation. Finally, the results obtained indicate the proposed scheme can classify both the majority class (normal users) and the minority class (electricity theft users) with good accuracy.

Suggested Citation

  • Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3310-:d:261598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    2. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    3. World Bank, 2003. "World Development Indicators 2003," World Bank Publications - Books, The World Bank Group, number 13920, December.
    4. Bernat Coma-Puig & Josep Carmona, 2019. "Bridging the Gap between Energy Consumption and Distribution through Non-Technical Loss Detection," Energies, MDPI, vol. 12(9), pages 1-17, May.
    5. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    6. Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
    7. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    2. Cheong Hee Park & Taegong Kim, 2020. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(15), pages 1-10, July.
    3. Xiaofeng Feng & Hengyu Hui & Ziyang Liang & Wenchong Guo & Huakun Que & Haoyang Feng & Yu Yao & Chengjin Ye & Yi Ding, 2020. "A Novel Electricity Theft Detection Scheme Based on Text Convolutional Neural Networks," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    5. Francisco Jonatas Siqueira Coelho & Allan Rivalles Souza Feitosa & André Luís Michels Alcântara & Kaifeng Li & Ronaldo Ferreira Lima & Victor Rios Silva & Abel Guilhermino da Silva-Filho, 2023. "HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms," Energies, MDPI, vol. 16(13), pages 1-22, June.
    6. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    7. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
    8. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    9. Youngghyu Sun & Jiyoung Lee & Soohyun Kim & Joonho Seon & Seongwoo Lee & Chanuk Kyeong & Jinyoung Kim, 2023. "Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset," Energies, MDPI, vol. 16(3), pages 1-13, January.
    10. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    12. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    13. Otuoze, Abdulrahaman Okino & Mustafa, Mohd Wazir & Abdulrahman, Abdulhakeem Temitope & Mohammed, Olatunji Obalowu & Salisu, Sani, 2020. "Penalization of electricity thefts in smart utility networks by a cost estimation-based forced corrective measure," Energy Policy, Elsevier, vol. 143(C).
    14. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    15. Konstantinos V. Blazakis & Theodoros N. Kapetanakis & George S. Stavrakakis, 2020. "Effective Electricity Theft Detection in Power Distribution Grids Using an Adaptive Neuro Fuzzy Inference System," Energies, MDPI, vol. 13(12), pages 1-13, June.
    16. Theyazn H. H. Aldhyani & Hasan Alkahtani, 2023. "Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    17. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
    18. Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    19. Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
    20. Akram Qashou & Sufian Yousef & Erika Sanchez-Velazquez, 2022. "Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2371-2390, October.
    21. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    22. Taha Selim Ustun, 2022. "Cybersecurity in Smart Grids," Energies, MDPI, vol. 15(15), pages 1-3, July.
    23. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    2. Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    4. Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).
    5. Zhengwei Qu & Hongwen Li & Yunjing Wang & Jiaxi Zhang & Ahmed Abu-Siada & Yunxiao Yao, 2020. "Detection of Electricity Theft Behavior Based on Improved Synthetic Minority Oversampling Technique and Random Forest Classifier," Energies, MDPI, vol. 13(8), pages 1-20, April.
    6. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    7. Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
    8. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    9. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    10. Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
    11. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    12. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Diego Aineto & Javier Iranzo-Sánchez & Lenin G. Lemus-Zúñiga & Eva Onaindia & Javier F. Urchueguía, 2019. "On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market," Energies, MDPI, vol. 12(11), pages 1-20, May.
    15. Chaminade, Cristina & Vang, Jan, 2005. "Innovation Policies for Small and Medium Size Enterprises in Asia: An Innovation Systems Perspective," Papers in Innovation Studies 2005/6, Lund University, CIRCLE - Centre for Innovation Research.
    16. Antonio Andres & Carlyn Ramlogan-Dobson, 2011. "Is Corruption Really Bad for Inequality? Evidence from Latin America," Journal of Development Studies, Taylor & Francis Journals, vol. 47(7), pages 959-976.
    17. Kee, Hiau Looi & Hoon, Hian Teck, 2005. "Trade, capital accumulation and structural unemployment: an empirical study of the Singapore economy," Journal of Development Economics, Elsevier, vol. 77(1), pages 125-152, June.
    18. de Walque, Damien, 2007. "How does the impact of an HIV/AIDS information campaign vary with educational attainment? Evidence from rural Uganda," Journal of Development Economics, Elsevier, vol. 84(2), pages 686-714, November.
    19. Amita Batra, 2006. "India's Global Trade Potential: The Gravity Model Approach," Global Economic Review, Taylor & Francis Journals, vol. 35(3), pages 327-361.
    20. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3310-:d:261598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.