IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v131y2019icp99-110.html
   My bibliography  Save this article

Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing

Author

Listed:
  • Kraan, Oscar
  • Kramer, Gert Jan
  • Nikolic, Igor
  • Chappin, Emile
  • Koning, Vinzenz

Abstract

Full decarbonisation of the electricity system is one of the key elements to limit global warming. As this transition takes place, the electricity system must maintain system adequacy and remain affordable to consumers. In liberalised electricity markets investors are seen as key actors driving this transition.

Suggested Citation

  • Kraan, Oscar & Kramer, Gert Jan & Nikolic, Igor & Chappin, Emile & Koning, Vinzenz, 2019. "Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing," Energy Policy, Elsevier, vol. 131(C), pages 99-110.
  • Handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:99-110
    DOI: 10.1016/j.enpol.2019.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519302551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    2. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," Utilities Policy, Elsevier, vol. 48(C), pages 76-91.
    3. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    4. Andrea Masini & Emanuela Menichetti, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Post-Print hal-00796331, HAL.
    5. Kraan, O. & Kramer, G.J. & Nikolic, I., 2018. "Investment in the future electricity system - An agent-based modelling approach," Energy, Elsevier, vol. 151(C), pages 569-580.
    6. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    7. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    8. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    9. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    10. Mastropietro, Paolo & Rodilla, Pablo & Batlle, Carlos, 2015. "National capacity mechanisms in the European internal energy market: Opening the doors to neighbours," Energy Policy, Elsevier, vol. 82(C), pages 38-47.
    11. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 589-612.
    12. Eric Guerci & Mohammad Ali Rastegar & Silvano Cincotti, 2010. "Agent-based modeling and simulation of competitive wholesale electricity markets," Post-Print halshs-00871063, HAL.
    13. Rodilla, P. & Batlle, C., 2012. "Security of electricity supply at the generation level: Problem analysis," Energy Policy, Elsevier, vol. 40(C), pages 177-185.
    14. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    15. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    16. Weis, Timothy M. & Ilinca, Adrian, 2008. "The utility of energy storage to improve the economics of wind–diesel power plants in Canada," Renewable Energy, Elsevier, vol. 33(7), pages 1544-1557.
    17. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    18. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    19. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    20. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    21. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    22. Andrea Masini & Emanuela Menichetti, 2013. "Investment Decisions in the Renewable Energy Sector: An Analysis of Non-Financial Drivers," Working Papers hal-01947453, HAL.
    23. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    24. Masini, Andrea & Menichetti, Emanuela, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 510-524.
    25. Wilson, James F., 2000. "Scarcity, Market Power, and Price Caps in Wholesale Electric Power Markets," The Electricity Journal, Elsevier, vol. 13(9), pages 33-46, November.
    26. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    27. Masini, Andrea & Menichetti , Emanuela, 2013. "Investment Decisions in the Renewable Energy Sector: An Analysis of Non-Financial Drivers," HEC Research Papers Series 976, HEC Paris.
    28. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    29. Cepeda, Mauricio & Finon, Dominique, 2011. "Generation capacity adequacy in interdependent electricity markets," Energy Policy, Elsevier, vol. 39(6), pages 3128-3143, June.
    30. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    31. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & Vries, Laurens J. De, 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48, pages 76-91.
    32. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
    33. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    34. Mastropietro, Paolo & Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2016. "A model-based analysis on the impact of explicit penalty schemes in capacity mechanisms," Applied Energy, Elsevier, vol. 168(C), pages 406-417.
    35. Höschle, Hanspeter & De Jonghe, Cedric & Le Cadre, Hélène & Belmans, Ronnie, 2017. "Electricity markets for energy, flexibility and availability — Impact of capacity mechanisms on the remuneration of generation technologies," Energy Economics, Elsevier, vol. 66(C), pages 372-383.
    36. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    37. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    38. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    39. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    40. Batlle, C. & Rodilla, P., 2010. "A critical assessment of the different approaches aimed to secure electricity generation supply," Energy Policy, Elsevier, vol. 38(11), pages 7169-7179, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehigan, L. & Ó Gallachóir, Brian & Deane, Paul, 2022. "Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?," Renewable Energy, Elsevier, vol. 196(C), pages 1229-1240.
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Blazquez, Jorge & Fuentes, Rolando & Manzano, Baltasar, 2020. "On some economic principles of the energy transition," Energy Policy, Elsevier, vol. 147(C).
    5. Gert Jan Kramer & Twan Arts & Janos L. Urai & Han Vrijling & Jan M. H. Huynen, 2020. "Risk Mitigation and Investability of a U-PHS Project in The Netherlands," Energies, MDPI, vol. 13(19), pages 1-18, September.
    6. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin & Fridgen, Gilbert, 2021. "Renewable electricity business models in a post feed-in tariff era," Energy, Elsevier, vol. 216(C).
    7. Norouzi, F. & Hoppe, T. & Kamp, L.M. & Manktelow, C. & Bauer, P., 2023. "Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Melliger, Marc & Chappin, Emile, 2022. "Phasing out support schemes for renewables in neighbouring countries: An agent-based model with investment preferences," Applied Energy, Elsevier, vol. 305(C).
    9. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    11. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    12. Pablo Ponce & Cristiana Oliveira & Viviana Álvarez & María de la Cruz del Río-Rama, 2020. "The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution," Energies, MDPI, vol. 13(22), pages 1-17, November.
    13. John P. Banks, 2022. "The decarbonization transition and U.S. electricity markets: Impacts and innovations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    14. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    15. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    16. Widha Kusumaningdyah & Tetsuo Tezuka & Benjamin C. McLellan, 2021. "Investigating Preconditions for Sustainable Renewable Energy Product–Service Systems in Retail Electricity Markets," Energies, MDPI, vol. 14(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    2. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    4. Kraan, O. & Kramer, G.J. & Nikolic, I., 2018. "Investment in the future electricity system - An agent-based modelling approach," Energy, Elsevier, vol. 151(C), pages 569-580.
    5. Tao, Zhenmin & Moncada, Jorge Andrés & Poncelet, Kris & Delarue, Erik, 2021. "Review and analysis of investment decision making algorithms in long-term agent-based electric power system simulation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    7. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    8. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    9. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    10. Bhagwat, Pradyumna C. & Marcheselli, Anna & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "An analysis of a forward capacity market with long-term contracts," Energy Policy, Elsevier, vol. 111(C), pages 255-267.
    11. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    12. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    13. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & Vries, Laurens J. De, 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48, pages 76-91.
    14. Sebastian Schäfer & Lisa Altvater, 2019. "On the functioning of a capacity market with an increasing share of renewable energy," Journal of Regulatory Economics, Springer, vol. 56(1), pages 59-84, August.
    15. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    16. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," Utilities Policy, Elsevier, vol. 48(C), pages 76-91.
    17. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    18. Doina Maria Radulescu & Philippe Sulger, 2021. "Interdependencies Between Countries in the Provision of Energy," CESifo Working Paper Series 8896, CESifo.
    19. Giorgos Stamtsis & Haris Doukas, 2018. "Cooperation or Localization in European Capacity Markets? A Coalitional Game over Graph Approach," Energies, MDPI, vol. 11(6), pages 1-17, June.
    20. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:99-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.