IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp418-424.html
   My bibliography  Save this article

Gasoline savings from clean vehicle adoption

Author

Listed:
  • Sheldon, Tamara L.
  • Dua, Rubal

Abstract

Conventional counterfactuals used in literature may underestimate fuel savings from clean vehicle adoption, thus overestimating the costs of securing associated environmental benefits. Using a large-scale nationally representative sample of U.S. new car buyers, we propose a choice model-based counterfactual approach to predict what consumers would purchase if clean vehicles were unavailable. We find that gasoline consumption under a no clean vehicle scenario increases by 1.7%, compared with 1.1% based on a conventional counterfactual. The conventional counterfactual overestimates the cost of gasoline savings from clean vehicle adoption incentives by $1.16 (27%) per gallon compared with the choice model-based counterfactual.

Suggested Citation

  • Sheldon, Tamara L. & Dua, Rubal, 2018. "Gasoline savings from clean vehicle adoption," Energy Policy, Elsevier, vol. 120(C), pages 418-424.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:418-424
    DOI: 10.1016/j.enpol.2018.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. R. DeShazo, 2016. "Improving Incentives for Clean Vehicle Purchases in the United States: Challenges and Opportunities," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 149-165.
    2. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    3. Gillingham, Kenneth, 2014. "Identifying the elasticity of driving: Evidence from a gasoline price shock in California," Regional Science and Urban Economics, Elsevier, vol. 47(C), pages 13-24.
    4. West, Jeremy & Hoekstra, Mark & Meer, Jonathan & Puller, Steven L., 2017. "Vehicle miles (not) traveled: Fuel economy requirements, vehicle characteristics, and household driving," Journal of Public Economics, Elsevier, vol. 145(C), pages 65-81.
    5. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    6. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    7. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    8. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    9. Gillingham, Kenneth & Jenn, Alan & Azevedo, Inês M.L., 2015. "Heterogeneity in the response to gasoline prices: Evidence from Pennsylvania and implications for the rebound effect," Energy Economics, Elsevier, vol. 52(S1), pages 41-52.
    10. Chris Tofallis, 2014. "Add or Multiply? A Tutorial on Ranking and Choosing with Multiple Criteria," INFORMS Transactions on Education, INFORMS, vol. 14(3), pages 109-119, May.
    11. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    12. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adekunle Mofolasayo, 2023. "Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles," Sustainability, MDPI, vol. 15(2), pages 1-33, January.
    2. Sheldon, Tamara L. & Dua, Rubal, 2020. "Effectiveness of China's plug-in electric vehicle subsidy," Energy Economics, Elsevier, vol. 88(C).
    3. Sheldon, Tamara L. & Dua, Rubal, 2019. "Measuring the cost-effectiveness of electric vehicle subsidies," Energy Economics, Elsevier, vol. 84(C).
    4. Sheldon, Tamara L. & Dua, Rubal & Alharbi, Omar Abdullah, 2023. "Electric vehicle subsidies: Time to accelerate or pump the brakes?," Energy Economics, Elsevier, vol. 120(C).
    5. Cruz-Jesus, Frederico & Figueira-Alves, Hugo & Tam, Carlos & Pinto, Diego Costa & Oliveira, Tiago & Venkatesh, Viswanath, 2023. "Pragmatic and idealistic reasons: What drives electric vehicle drivers' satisfaction and continuance intention?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    6. Sheldon, Tamara L. & Dua, Rubal, 2021. "How responsive is Saudi new vehicle fleet fuel economy to fuel-and vehicle-price policy levers?," Energy Economics, Elsevier, vol. 97(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    2. Spiller, Elisheba & Sopher, Peter & Martin, Nicholas & Mirzatuny, Marita & Zhang, Xinxing, 2017. "The environmental impacts of green technologies in TX," Energy Economics, Elsevier, vol. 68(C), pages 199-214.
    3. Burke, Paul J. & Batsuuri, Tsendsuren & Yudhistira, Muhammad Halley, 2017. "Easing the traffic: The effects of Indonesia’s fuel subsidy reforms on toll-road travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 167-180.
    4. Goetzke, Frank & Vance, Colin, 2018. "Is gasoline price elasticity in the United States increasing? Evidence from the 2009 and 2017 national household travel surveys," Ruhr Economic Papers 765, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Rivers, Nicholas & Schaufele, Brandon, 2017. "Gasoline price and new vehicle fuel efficiency: Evidence from Canada," Energy Economics, Elsevier, vol. 68(C), pages 454-465.
    6. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    7. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    8. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    9. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    10. Patrick Bigler & Doina Maria Radulescu, 2022. "Environmental, Redistributive and Revenue Effects of Policies Promoting Fuel Efficient and Electric Vehicles," CESifo Working Paper Series 9645, CESifo.
    11. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    12. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    13. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    14. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    15. Carley, Sanya & Zirogiannis, Nikolaos & Siddiki, Saba & Duncan, Denvil & Graham, John D., 2019. "Overcoming the shortcomings of U.S. plug-in electric vehicle policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    17. Sheldon, Tamara L. & Dua, Rubal, 2019. "Measuring the cost-effectiveness of electric vehicle subsidies," Energy Economics, Elsevier, vol. 84(C).
    18. Matsushima, Hiroshi & Khanna, Madhu, 2022. "Estimating Medium-run Direct Rebound Effects of the Footprint-based CAFE Standard," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322420, Agricultural and Applied Economics Association.
    19. Li, Ping & Zhang, ZhongXiang, 2023. "The effects of new energy vehicle subsidies on air quality: Evidence from China," Energy Economics, Elsevier, vol. 120(C).
    20. Holland, Stephen P. & Mansur, Erin T. & Muller, Nicholas Z. & Yates, Andrew J., 2021. "The environmental benefits of transportation electrification: Urban buses," Energy Policy, Elsevier, vol. 148(PA).

    More about this item

    Keywords

    Q48; R40; Fuel efficiency; Clean vehicles; Air pollution; Transportation policy;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:418-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.