IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v116y2018icp170-181.html
   My bibliography  Save this article

Quota allocation of coal overcapacity reduction among provinces in China

Author

Listed:
  • Wang, Delu
  • Wan, Kaidi
  • Song, Xuefeng

Abstract

Laying down fair and economically viable policies to allocate quotas of coal overcapacity reduction to provinces has drawn great attention from both governments and enterprises. In this study, the production function method and panel variable coefficient model are used to estimate the boundary production function and coal capacities of 25 coal-producing provinces. The results predict that China's coal overcapacity will reach more than 0.803 billion tons by 2020. Then, a quota allocation model of coal overcapacity reduction among the provinces is proposed based on nonlinear programming, with the aim of minimizing the total cost of national overcapacity reduction. The results show that the total cost of national overcapacity reduction based on the optimal allocation scheme is 56.6695 billion yuan less than that based on the government allocation scheme. The Gini coefficient of the optimal allocation scheme is smaller than 0.3, indicating that this plan considers effectiveness and fairness. Furthermore, we calculate the optimal proportions for the provinces to reduce coal overcapacity based on different capacity utilizations and different national coal production control targets. The results show that the optimal proportions for most provinces are approximately the same under different conditions, which means the optimal allocation scheme is robust and efficient.

Suggested Citation

  • Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2018. "Quota allocation of coal overcapacity reduction among provinces in China," Energy Policy, Elsevier, vol. 116(C), pages 170-181.
  • Handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:170-181
    DOI: 10.1016/j.enpol.2018.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Zongyun & Niu, Dongxiao & Xiao, Xinli, 2017. "Focus on the current competitiveness of coal industry in China: Has the depression time gone?," Resources Policy, Elsevier, vol. 51(C), pages 172-182.
    2. Ray, Subhash C., 2015. "Nonparametric measures of scale economies and capacity utilization: An application to U.S. manufacturing," European Journal of Operational Research, Elsevier, vol. 245(2), pages 602-611.
    3. Hulya Dagdeviren, 2016. "Structural constraints and excess capacity: an international comparison of manufacturing firms," Development Policy Review, Overseas Development Institute, vol. 34(5), pages 623-641, September.
    4. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    5. Wang, Yong-hua & Luo, Guo-liang & Guo, Yi-wei, 2014. "Why is there overcapacity in China's PV industry in its early growth stage?," Renewable Energy, Elsevier, vol. 72(C), pages 188-194.
    6. Li, Chong-Mao & Nie, Rui, 2017. "An evaluating system for scientific mining of China's coal resources," Resources Policy, Elsevier, vol. 53(C), pages 317-327.
    7. Zhang, Jianjun & Fu, Meichen & Geng, Yuhuan & Tao, Jin, 2011. "Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China," Energy Policy, Elsevier, vol. 39(6), pages 3029-3032, June.
    8. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Lu, Peixin, 2017. "Evaluation on the coupling coordination of resources and environment carrying capacity in Chinese mining economic zones," Resources Policy, Elsevier, vol. 53(C), pages 20-25.
    9. Goh, Eric & Effendi, Shahar, 2017. "Overview of an effective governance policy for mineral resource sustainability in Malaysia," Resources Policy, Elsevier, vol. 52(C), pages 1-6.
    10. Ruixue Jia & Huihua Nie, 2017. "Decentralization, Collusion, and Coal Mine Deaths," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 105-118, March.
    11. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    12. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    13. Andrews-Speed, Philip & Ma, Guo & Shao, Bingjia & Liao, Chenglin, 2005. "Economic responses to the closure of small-scale coal mines in Chongqing, China," Resources Policy, Elsevier, vol. 30(1), pages 39-54, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ayhan Kose & Peter S. O. Nagle & Franziska Ohnsorge & Naotaka Sugawara, 2020. "Can This Time Be Different? Policy Options in Times of Rising Debt," Koç University-TUSIAD Economic Research Forum Working Papers 2008, Koc University-TUSIAD Economic Research Forum.
    2. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    3. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    4. Wang, Ge & Zhang, Qi & Li, Yan & Mclellan, Benjamin C., 2019. "Efficient and equitable allocation of renewable portfolio standards targets among China's provinces," Energy Policy, Elsevier, vol. 125(C), pages 170-180.
    5. Xiang, Hongjin & Kuang, Yanxiang & He, Hongbo & Yao, Shujie, 2022. "Could tariffs reduce overcapacity and environmental pollution? Evidence from China’s adjustment of tariffs on coal," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 129-144.
    6. Wang, Delu & Wan, Kaidi & Song, Xuefeng & Liu, Yun, 2019. "Provincial allocation of coal de-capacity targets in China in terms of cost, efficiency, and fairness," Energy Economics, Elsevier, vol. 78(C), pages 109-128.
    7. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    8. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
    9. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    10. Yan He & Yung-ho Chiu & Bin Zhang, 2020. "Prevaluating Technical Efficiency Gains From Potential Mergers and Acquisitions in China’s Coal Industry," SAGE Open, , vol. 10(3), pages 21582440209, July.
    11. Wang, Xiaofei & Miao, Chenglin & Wang, Chongmei & Yin, Dawei & Chen, Shaojie & Chen, Lei & Li, Ke, 2022. "Coal production capacity allocation based on efficiency perspective—taking production mines in Shandong Province as an example," Energy Policy, Elsevier, vol. 171(C).
    12. Liu, Dandan & Wang, Delu, 2022. "Evaluation of the synergy degree of industrial de-capacity policies based on text mining: A case study of China's coal industry," Resources Policy, Elsevier, vol. 76(C).
    13. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    14. Wang, Zhan-ao & Zheng, Chengsi, 2022. "Is technological innovation the cure for overcapacity? Exploring mediating and moderating mechanisms," Journal of Business Research, Elsevier, vol. 147(C), pages 348-361.
    15. Wen, Huwei & Lee, Chien-Chiang & Zhou, Fengxiu, 2021. "Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises," Energy Economics, Elsevier, vol. 94(C).
    16. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).
    17. Yuliang Yang & Chaoqun Cui, 2022. "Which Provincial Regions in China Should Give Priority to the Redevelopment of Abandoned Coal Mines? A Redevelopment Potential Evaluation Based Analysis," Sustainability, MDPI, vol. 14(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
    2. Yan He & Yung-ho Chiu & Bin Zhang, 2020. "Prevaluating Technical Efficiency Gains From Potential Mergers and Acquisitions in China’s Coal Industry," SAGE Open, , vol. 10(3), pages 21582440209, July.
    3. Yu, Shiwei & Lu, Tingwei & Hu, Xing & Liu, Lancui & Wei, Yi-Ming, 2021. "Determinants of overcapacity in China’s renewable energy industry: Evidence from wind, photovoltaic, and biomass energy enterprises," Energy Economics, Elsevier, vol. 97(C).
    4. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    5. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    6. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2018. "Coal miners’ livelihood vulnerability to economic shock: Multi-criteria assessment and policy implications," Energy Policy, Elsevier, vol. 114(C), pages 301-314.
    7. Wang, Delu & Wan, Kaidi & Song, Xuefeng & Liu, Yun, 2019. "Provincial allocation of coal de-capacity targets in China in terms of cost, efficiency, and fairness," Energy Economics, Elsevier, vol. 78(C), pages 109-128.
    8. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
    9. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    10. Shuai Han & Hong Chen & Maggie-Anne Harvey & Eric Stemn & David Cliff, 2018. "Focusing on Coal Workers’ Lung Diseases: A Comparative Analysis of China, Australia, and the United States," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    11. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    12. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    13. Chen, Sai & Song, Yan & Zhang, Ming, 2021. "Study on the sustainability evaluation and development path selection of China’s coal base from the perspective of spatial field," Energy, Elsevier, vol. 215(PA).
    14. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    15. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    16. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    17. Wang, Xiaofei & Miao, Chenglin & Wang, Chongmei & Yin, Dawei & Chen, Shaojie & Chen, Lei & Li, Ke, 2022. "Coal production capacity allocation based on efficiency perspective—taking production mines in Shandong Province as an example," Energy Policy, Elsevier, vol. 171(C).
    18. Wang, Zhan-ao & Zheng, Chengsi, 2022. "Is technological innovation the cure for overcapacity? Exploring mediating and moderating mechanisms," Journal of Business Research, Elsevier, vol. 147(C), pages 348-361.
    19. Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
    20. Jianming Xi & Hanran Wu & Bo Li & Jingyu Liu, 2020. "A Quantitative Analysis of the Optimal Energy Policy from the Perspective of China’s Supply-Side Reform," Sustainability, MDPI, vol. 12(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:170-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.