IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v114y2018icp51-62.html
   My bibliography  Save this article

A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment

Author

Listed:
  • Raugei, Marco
  • Leccisi, Enrica
  • Azzopardi, Brian
  • Jones, Christopher
  • Gilbert, Paul
  • Zhang, Lingxi
  • Zhou, Yutian
  • Mander, Sarah
  • Mancarella, Pierluigi

Abstract

The increasing contribution of renewable energies to electricity grids in order to address impending environmental challenges implies a reduction in non-renewable resource use and an alignment with a global transition toward a low-carbon electric sector. In this paper, four future UK grid mix scenarios with increased photovoltaic (PV) installed capacity are assessed and compared to a benchmark “Low PV” scenario, from 2016 to 2035. The complexity of the issue requires a multi-disciplinary approach to evaluate the availability of net energy, environmental aspects and technical performance. Hence, the comparison between scenarios includes short-term and long-term energy metrics as well as greenhouse gas (GHG) and technical metrics. Also, the paper considers the viewpoints offered by both an “integrative” and a “dynamic” approach to net energy analysis. Results for all five analysed scenarios indicate that increased PV deployment will not be detrimental to the UK grid performance from the points of view of a wide range of system-level technical (% renewable energy curtailment to ensure grid stability), energy (energy return on investment and non-renewable cumulative energy demand) and environmental (greenhouse gas emissions) metrics.

Suggested Citation

  • Raugei, Marco & Leccisi, Enrica & Azzopardi, Brian & Jones, Christopher & Gilbert, Paul & Zhang, Lingxi & Zhou, Yutian & Mander, Sarah & Mancarella, Pierluigi, 2018. "A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment," Energy Policy, Elsevier, vol. 114(C), pages 51-62.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:51-62
    DOI: 10.1016/j.enpol.2017.11.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151730808X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.11.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    2. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    3. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    4. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    5. David J. Murphy & Michael Carbajales-Dale & Devin Moeller, 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework," Energies, MDPI, vol. 9(11), pages 1-15, November.
    6. Leach, Gerald, 1975. "Net energy analysis -- is it any use?," Energy Policy, Elsevier, vol. 3(4), pages 332-344, December.
    7. Kannan, Ramachandran, 2011. "The development and application of a temporal MARKAL energy system model using flexible time slicing," Applied Energy, Elsevier, vol. 88(6), pages 2261-2272, June.
    8. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    9. Pehnt, Martin & Oeser, Michael & Swider, Derk J., 2008. "Consequential environmental system analysis of expected offshore wind electricity production in Germany," Energy, Elsevier, vol. 33(5), pages 747-759.
    10. Chee Tahir, Aidid & Bañares-Alcántara, René, 2012. "A knowledge representation model for the optimisation of electricity generation mixes," Applied Energy, Elsevier, vol. 97(C), pages 77-83.
    11. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    12. Cleveland, Cutler J., 1992. "Energy quality and energy surplus in the extraction of fossil fuels in the U.S," Ecological Economics, Elsevier, vol. 6(2), pages 139-162, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Mudan Wang & Xianqiang Mao & Youkai Xing & Jianhong Lu & Peng Song & Zhengyan Liu & Zhi Guo & Kevin Tu & Eric Zusman, 2021. "Breaking down barriers on PV trade will facilitate global carbon mitigation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    4. Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).
    5. Luciano Celi & Claudio Della Volpe & Luca Pardi & Stefano Siboni, 2018. "A New Approach to Calculating the “Corporate” EROI," Biophysical Economics and Resource Quality, Springer, vol. 3(4), pages 1-28, December.
    6. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.
    7. Fatemeh Jamshidi & Mohammad Reza Salehizadeh & Reza Yazdani & Brian Azzopardi & Vibhu Jately, 2023. "An Improved Sliding Mode Controller for MPP Tracking of Photovoltaics," Energies, MDPI, vol. 16(5), pages 1-20, March.
    8. Quyen Le Luu & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino & Maria Anna Cusenza & Vincenzo Franzitta, 2020. "A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector," Energies, MDPI, vol. 13(12), pages 1-19, June.
    9. Marco Raugei & Mashael Kamran & Allan Hutchinson, 2020. "A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid," Energies, MDPI, vol. 13(9), pages 1-28, May.
    10. Alicja Lenarczyk & Marcin Jaskólski & Paweł Bućko, 2022. "The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    2. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    5. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    6. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    7. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.
    8. Astudillo, Miguel F. & Vaillancourt, Kathleen & Pineau, Pierre-Olivier & Amor, Ben, 2017. "Can the household sector reduce global warming mitigation costs? sensitivity to key parameters in a TIMES techno-economic energy model," Applied Energy, Elsevier, vol. 205(C), pages 486-498.
    9. Pickard, William F., 2017. "A simple lower bound on the EROI of photovoltaic electricity generation," Energy Policy, Elsevier, vol. 107(C), pages 488-490.
    10. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    11. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    13. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    14. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    15. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    16. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    17. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    18. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    19. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    20. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.