IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp518-524.html
   My bibliography  Save this article

Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

Author

Listed:
  • Mignone, Bryan K.
  • Showalter, Sharon
  • Wood, Frances
  • McJeon, Haewon
  • Steinberg, Daniel

Abstract

One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we find that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.

Suggested Citation

  • Mignone, Bryan K. & Showalter, Sharon & Wood, Frances & McJeon, Haewon & Steinberg, Daniel, 2017. "Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations," Energy Policy, Elsevier, vol. 110(C), pages 518-524.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:518-524
    DOI: 10.1016/j.enpol.2017.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517305062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    2. Healey, Stephen & Jaccard, Mark, 2016. "Abundant low-cost natural gas and deep GHG emissions reductions for the United States," Energy Policy, Elsevier, vol. 98(C), pages 241-253.
    3. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    4. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    5. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    6. Cole, Wesley J. & Medlock, Kenneth B. & Jani, Aditya, 2016. "A view to the future of natural gas and electricity: An integrated modeling approach," Energy Economics, Elsevier, vol. 60(C), pages 486-496.
    7. Ross, Martin T. & Murray, Brian C., 2016. "What is the fuel of the future? Prospects under the Clean Power Plan," Energy Economics, Elsevier, vol. 60(C), pages 451-459.
    8. Huntington, Hillard G., 2016. "Introduction: North American natural gas markets in transition," Energy Economics, Elsevier, vol. 60(C), pages 401-404.
    9. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    10. Logan, Jeffrey & Lopez, Anthony & Mai, Trieu & Davidson, Carolyn & Bazilian, Morgan & Arent, Douglas, 2013. "Natural gas scenarios in the U.S. power sector," Energy Economics, Elsevier, vol. 40(C), pages 183-195.
    11. Zhang, Xiaochun & Myhrvold, Nathan P. & Hausfather, Zeke & Caldeira, Ken, 2016. "Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems," Applied Energy, Elsevier, vol. 167(C), pages 317-322.
    12. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    13. Rubin, Jonathan D., 1996. "A Model of Intertemporal Emission Trading, Banking, and Borrowing," Journal of Environmental Economics and Management, Elsevier, vol. 31(3), pages 269-286, November.
    14. Michael Levi, 2013. "Climate consequences of natural gas as a bridge fuel," Climatic Change, Springer, vol. 118(3), pages 609-623, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Yong-Liang & Guo, Chen-Xian & Li, Ke-Jun & Li, Ming-Yang, 2021. "Economic scheduling of compressed natural gas main station considering critical peak pricing," Applied Energy, Elsevier, vol. 292(C).
    2. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    3. Yongliang Liang & Zhiqi Li & Yuchuan Li & Shuwen Leng & Hongmei Cao & Kejun Li, 2023. "Bilevel Optimal Economic Dispatch of CNG Main Station Considering Demand Response," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Grimm, Veronika & Grübel, Julia & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2019. "Nonconvex equilibrium models for gas market analysis: Failure of standard techniques and alternative modeling approaches," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1097-1108.
    5. Wang, Guotao & Liao, Qi & Li, Zhengbing & Zhang, Haoran & Liang, Yongtu & Wei, Xuemei, 2022. "How does soaring natural gas prices impact renewable energy: A case study in China," Energy, Elsevier, vol. 252(C).
    6. F, Feijoo & A, Pfeifer & L, Herc & D, Groppi & N, Duić, 2022. "A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    2. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    3. Healey, Stephen & Jaccard, Mark, 2016. "Abundant low-cost natural gas and deep GHG emissions reductions for the United States," Energy Policy, Elsevier, vol. 98(C), pages 241-253.
    4. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    5. Shimbar, A., 2021. "Environment-related stranded assets: An agenda for research into value destruction within carbon-intensive sectors in response to environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Cohen, Francois & Pfeiffer, Alexander, 2018. "The Impact of Negative Emissions Technologies and Natural Climate Solutions on Power-Sector Asset Stranding," INET Oxford Working Papers 2018-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    7. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    8. Frederick van der Ploeg & Armon Rezai, 2020. "Stranded Assets in the Transition to a Carbon-Free Economy," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 281-298, October.
    9. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    10. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    11. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    12. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    13. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    14. Hepburn, Cameron & Pfeiffer, Alexander & Vogt-Schilb, Adrien & J. Tulloch, Daniel, 2018. "Dead on arrival? Implicit stranded assets in leading IAM scenarios," INET Oxford Working Papers 2018-08, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    15. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
    16. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
    17. Staffan Qvist & Paweł Gładysz & Łukasz Bartela & Anna Sowiżdżał, 2020. "Retrofit Decarbonization of Coal Power Plants—A Case Study for Poland," Energies, MDPI, vol. 14(1), pages 1-37, December.
    18. Zhang, Weirong & Ren, Mengjia & Kang, Junjie & Zhou, Yiou & Yuan, Jiahai, 2022. "Estimating stranded coal assets in China's power sector," Utilities Policy, Elsevier, vol. 75(C).
    19. Temitayo B. Majekodunmi & Mohd Shahidan Shaari & Nor Fadzilah Zainal & Nor Hidayah Harun & Abdul Rahim Ridzuan & Noorazeela Zainol Abidin & Nur Hayati Abd Rahman, 2023. "Gas Consumption as a Key for Low Carbon State and its Impact on Economic Growth in Malaysia: ARDL Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 469-477, May.
    20. Robert J. Brecha & Gaurav Ganti & Robin D. Lamboll & Zebedee Nicholls & Bill Hare & Jared Lewis & Malte Meinshausen & Michiel Schaeffer & Christopher J. Smith & Matthew J. Gidden, 2022. "Institutional decarbonization scenarios evaluated against the Paris Agreement 1.5 °C goal," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:518-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.