IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v31y2009i5p800-809.html
   My bibliography  Save this article

On backstops and boomerangs: Environmental R&D under technological uncertainty

Author

Listed:
  • Goeschl, Timo
  • Perino, Grischa

Abstract

In areas such as climate change, the recent economic literature has been emphasizing and addressing the pervasive presence of uncertainty. This paper considers a new and salient form of uncertainty, namely uncertainty regarding the environmental characteristics of 'green' innovations. Here, R&D may generate both backstop technologies and technologies that turn out to involve a new pollution problem ('boomerangs'). In the optimum, R&D will therefore typically be undertaken more than once. Extending results from multi-stage optimal control theory, we present a tractable model with a full characterization of the optimal pollution and R&D policies and the role of uncertainty. In this setting, (i) the optimal R&D program is defined by a research trigger condition in which the decision-maker's belief about the probability of finding a backstop enters in an intuitive way; (ii) a decreasing probability of finding a backstop leads to the toleration of higher pollution levels, slower R&D, a slower turnover of technologies, and an ambiguous effect on the expected number of innovations; (iii) learning about the probability of a backstop is driven by failures only and leads to decreasing research incentives; and (iv) small to moderate delays in the resolution of technological uncertainty do not affect the optimal policy.

Suggested Citation

  • Goeschl, Timo & Perino, Grischa, 2009. "On backstops and boomerangs: Environmental R&D under technological uncertainty," Energy Economics, Elsevier, vol. 31(5), pages 800-809, September.
  • Handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:800-809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00036-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baker, Erin & Adu-Bonnah, Kwame, 2008. "Investment in risky R&D programs in the face of climate uncertainty," Energy Economics, Elsevier, vol. 30(2), pages 465-486, March.
    2. Carolyn Fischer & Cees Withagen & Michael Toman, 2004. "Optimal Investment in Clean Production Capacity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 325-345, July.
    3. Sunstein,Cass R., 2002. "Risk and Reason," Cambridge Books, Cambridge University Press, number 9780521791991.
    4. Goeschl, Timo & Perino, Grischa, 2007. "Innovation without magic bullets: Stock pollution and R&D sequences," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 146-161, September.
    5. Michida, Etsuyo & Nishikimi, Koji, 2007. "North-South trade and industry-specific pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 229-243, September.
    6. Bosetti, Valentina & Tavoni, Massimo, 2009. "Uncertain R&D, backstop technology and GHGs stabilization," Energy Economics, Elsevier, vol. 31(Supplemen), pages 18-26.
    7. Grischa Perino, 2008. "The merits of new pollutants and how to get them when patents are granted," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(3), pages 313-327, July.
    8. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    9. William D. Nordhaus, 1973. "The Allocation of Energy Resources," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 4(3), pages 529-576.
    10. Marc Baudry, 2000. "Joint Management of Emission Abatement and Technological Innovation for Stock Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 161-183, June.
    11. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    12. Tomiyama, Ken, 1985. "Two-stage optimal control problems and optimality conditions," Journal of Economic Dynamics and Control, Elsevier, vol. 9(3), pages 317-337, November.
    13. Michael Grubb, Carlo Carraro and John Schellnhuber, 2006. "Technological Change for Atmospheric Stabilization: Introductory Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-16.
    14. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    15. Makris, Miltiadis, 2001. "Necessary conditions for infinite-horizon discounted two-stage optimal control problems," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1935-1950, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baker, Erin & Solak, Senay, 2011. "Climate change and optimal energy technology R&D policy," European Journal of Operational Research, Elsevier, vol. 213(2), pages 442-454, September.
    2. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    3. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
    4. Morteza Akbari & Hamid Padash & Zahra Shahabaldini Parizi & Haniye Rezaei & Elmira Shahriari & Ala Khosravani, 2022. "A bibliometric review of green innovation research: identifying knowledge domain and network," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3993-4023, December.
    5. Natasha Hazarika, 2021. "R&D Intensity and Its Curvilinear Relationship with Firm Profitability: Perspective from the Alternative Energy Sector," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    6. Perino, Grischa & Willner, Maximilian, 2015. "The price and emission effects of a market stability reserve in a competitive allowance market," WiSo-HH Working Paper Series 28, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    7. K. Branker & E. Shackles & J. M. Pearce, 2011. "Peer-to-peer financing mechanisms to accelerate renewable energy deployment," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 1(2), pages 138-155, April.
    8. Tsur, Yacov & Zemel, Amos, 2012. "Dynamic and stochastic analysis of environmental and natural resources," Discussion Papers 120017, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    9. Vicknair, David & Tansey, Michael & O'Brien, Thomas E., 2022. "Measuring fossil fuel reserves: A simulation and review of the U.S. Securities and Exchange Commission approach," Resources Policy, Elsevier, vol. 79(C).
    10. Tiefenbeck, Verena & Staake, Thorsten & Roth, Kurt & Sachs, Olga, 2013. "For better or for worse? Empirical evidence of moral licensing in a behavioral energy conservation campaign," Energy Policy, Elsevier, vol. 57(C), pages 160-171.
    11. Dolan, Paul & Galizzi, Matteo M., 2015. "Like ripples on a pond: Behavioral spillovers and their implications for research and policy," Journal of Economic Psychology, Elsevier, vol. 47(C), pages 1-16.
    12. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    2. Valente, Simone, 2011. "Endogenous Growth, Backstop Technology Adoption, And Optimal Jumps," Macroeconomic Dynamics, Cambridge University Press, vol. 15(3), pages 293-325, June.
    3. Färnstrand Damsgaard, Erika, 2012. "Exhaustible resources, technology choice and industrialization of developing countries," Resource and Energy Economics, Elsevier, vol. 34(3), pages 271-294.
    4. Caliendo, Frank N. & Gorry, Aspen & Slavov, Sita, 2019. "The cost of uncertainty about the timing of Social Security reform," European Economic Review, Elsevier, vol. 118(C), pages 101-125.
    5. Elke Moser & Andrea Seidl & Gustav Feichtinger, 2014. "History-dependence in production-pollution-trade-off models: a multi-stage approach," Annals of Operations Research, Springer, vol. 222(1), pages 457-481, November.
    6. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    7. Goeschl, Timo & Perino, Grischa, 2007. "Innovation without magic bullets: Stock pollution and R&D sequences," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 146-161, September.
    8. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    9. Andre, Francisco J. & Cerda, Emilio, 2005. "On natural resource substitution," Resources Policy, Elsevier, vol. 30(4), pages 233-246, December.
    10. repec:awi:wpaper:0437 is not listed on IDEAS
    11. Takanobu Kosugi, 2010. "Assessments of ‘Greenhouse Insurance’: A Methodological Review," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 345-363, December.
    12. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    13. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    14. Camacho, Carmen & Hassan, Waleed, 2023. "The dynamics of revolution: Discrimination, social unrest and the optimal timing of revolution," Economic Modelling, Elsevier, vol. 128(C).
    15. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    16. Galos Krzysztof & Nieć Marek & Saługa Piotr W. & Uberman Robert, 2015. "The basic problems of mineral resources valuation methodologies within the framework of System of Integrated Environmental and Economic Accounts," Gospodarka Surowcami Mineralnymi / Mineral Resources Management, Sciendo, vol. 31(4), pages 5-20, December.
    17. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    18. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
    19. Chakravorty, Ujjayant & Magné, Bertrand & Moreaux, Michel, 2006. "Can Nuclear Power solve the Global Warming Problem?," IDEI Working Papers 381, Institut d'Économie Industrielle (IDEI), Toulouse.
    20. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    21. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:800-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.