Advanced Search
MyIDEAS: Login

Climate change and optimal energy technology R&D policy

Contents:

Author Info

  • Baker, Erin
  • Solak, Senay
Registered author(s):

    Abstract

    Public policy response to global climate change presents a classic problem of decision making under uncertainty. Theoretical work has shown that explicitly accounting for uncertainty and learning in climate change can have a large impact on optimal policy, especially technology policy. However, theory also shows that the specific impacts of uncertainty are ambiguous. In this paper, we provide a framework that combines economics and decision analysis to implement probabilistic data on energy technology research and development (R&D) policy in response to global climate change. We find that, given a budget constraint, the composition of the optimal R&D portfolio is highly diversified and robust to risk in climate damages. The overall optimal investment into technical change, however, does depend (in a non-monotonic way) on the risk in climate damages. Finally, we show that in order to properly value R&D, abatement must be included as a recourse decision.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711003080
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 213 (2011)
    Issue (Month): 2 (September)
    Pages: 442-454

    as in new window
    Handle: RePEc:eee:ejores:v:213:y:2011:i:2:p:442-454

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eor

    Related research

    Keywords: R&D portfolio Energy technology Climate change Stochastic programming Public policy;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Baker, Erin & Adu-Bonnah, Kwame, 2008. "Investment in risky R&D programs in the face of climate uncertainty," Energy Economics, Elsevier, vol. 30(2), pages 465-486, March.
    2. Ronald A. Howard, 1988. "Decision Analysis: Practice and Promise," Management Science, INFORMS, vol. 34(6), pages 679-695, June.
    3. Baker, Erin & Chon, Haewon & Keisler, Jeffrey, 2009. "Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy," Energy Economics, Elsevier, vol. 31(Supplemen), pages S37-S49.
    4. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    5. Farzin, Y H & Kort, P M, 2000. " Pollution Abatement Investment When Environmental Regulation Is Uncertain," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 2(2), pages 183-212.
    6. Timo Goeschl & Grischa Perino, 2007. "On Backstops and Boomerangs: Environmental R&D under Technological Uncertainty," Working Papers 0437, University of Heidelberg, Department of Economics, revised Jan 2007.
    7. Baker, Erin & Shittu, Ekundayo, 2006. "Profit-maximizing R&D in response to a random carbon tax," Resource and Energy Economics, Elsevier, vol. 28(2), pages 160-180, May.
    8. Alexander Shapiro, 2003. "Inference of statistical bounds for multistage stochastic programming problems," Computational Statistics, Springer, vol. 58(1), pages 57-68, 09.
    9. Blanford, Geoffrey J., 2009. "R&D investment strategy for climate change," Energy Economics, Elsevier, vol. 31(Supplemen), pages S27-S36.
    10. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    11. William A. Pizer & David Popp, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," NBER Working Papers 13053, National Bureau of Economic Research, Inc.
    12. Valentina Bosetti & Laurent Drouet, 2005. "Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model," Working Papers 2005.147, Fondazione Eni Enrico Mattei.
    13. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    14. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Pillai, Unni & McLaughlin, Jamison, 2013. "A model of competition in the solar panel industry," Energy Economics, Elsevier, vol. 40(C), pages 32-39.
    2. Popp, David & Santen, Nidhi & Fisher-Vanden, Karen & Webster, Mort, 2013. "Technology variation vs. R&D uncertainty: What matters most for energy patent success?," Resource and Energy Economics, Elsevier, vol. 35(4), pages 505-533.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:213:y:2011:i:2:p:442-454. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.