IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v111y2022ics0140988322002201.html
   My bibliography  Save this article

Evaluating carbon tax policy: A methodological reassessment of a natural experiment

Author

Listed:
  • Arcila, Andres
  • Baker, John D.

Abstract

Heralded as the grand experiment in carbon tax policy, the Canadian province of British Columbia was on the forefront of North American environmental policy when it implemented a carbon tax in 2008. Despite being well-lauded in the literature, new data suggests that CO2 emissions and fossil fuel consumption have in fact risen in recent years. We test the effectiveness of the policy change using a synthetic control analysis and find that, contrary to the theoretical intuition about carbon taxation, CO2 emissions and gasoline consumption rose in British Columbia relative to the synthetic control. However, we do find there to be a reduced share of economic activity in the energy industry following the policy change.

Suggested Citation

  • Arcila, Andres & Baker, John D., 2022. "Evaluating carbon tax policy: A methodological reassessment of a natural experiment," Energy Economics, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:eneeco:v:111:y:2022:i:c:s0140988322002201
    DOI: 10.1016/j.eneco.2022.106053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322002201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hájek, Miroslav & Zimmermannová, Jarmila & Helman, Karel & Rozenský, Ladislav, 2019. "Analysis of carbon tax efficiency in energy industries of selected EU countries," Energy Policy, Elsevier, vol. 134(C).
    2. Beck, Marisa & Rivers, Nicholas & Wigle, Randall & Yonezawa, Hidemichi, 2015. "Carbon tax and revenue recycling: Impacts on households in British Columbia," Resource and Energy Economics, Elsevier, vol. 41(C), pages 40-69.
    3. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    4. Edward Olale & Emmanuel K. Yiridoe & Thomas O. Ochuodho & Van Lantz, 2019. "The Effect of Carbon Tax on Farm Income: Evidence from a Canadian Province," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 605-623, October.
    5. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    6. Jean-Thomas Bernard and Maral Kichian, 2021. "The Impact of a Revenue-Neutral Carbon Tax on GDP Dynamics: The Case of British Columbia," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 205-224.
    7. Sam Meng & Mahinda Siriwardana & Judith McNeill, 2013. "The Environmental and Economic Impact of the Carbon Tax in Australia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 313-332, March.
    8. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    9. Kathryn Harrison, 2013. "The Political Economy of British Columbia's Carbon Tax," OECD Environment Working Papers 63, OECD Publishing.
    10. Julius J. Andersson, 2019. "Carbon Taxes and CO2 Emissions: Sweden as a Case Study," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 1-30, November.
    11. Miriam Frey, 2017. "Assessing the impact of a carbon tax in Ukraine," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 378-396, April.
    12. Allan, Grant & Lecca, Patrizio & McGregor, Peter & Swales, Kim, 2014. "The economic and environmental impact of a carbon tax for Scotland: A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 100(C), pages 40-50.
    13. Rivers, Nicholas & Schaufele, Brandon, 2015. "Salience of carbon taxes in the gasoline market," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 23-36.
    14. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    15. Stewart Elgie & Jessica McClay, 2013. "Policy Commentary/Commentaire BC's Carbon Tax Shift Is Working Well after Four Years (Attention Ottawa)," Canadian Public Policy, University of Toronto Press, vol. 39(s2), pages 1-10, August.
    16. Xiang, Di & Lawley, Chad, 2019. "The impact of British Columbia's carbon tax on residential natural gas consumption," Energy Economics, Elsevier, vol. 80(C), pages 206-218.
    17. Murray, Brian & Rivers, Nicholas, 2015. "British Columbia’s revenue-neutral carbon tax: A review of the latest “grand experiment” in environmental policy," Energy Policy, Elsevier, vol. 86(C), pages 674-683.
    18. Can Erutku & Vincent Hildebrand, 2018. "Carbon Tax at the Pump in British Columbia and Quebec," Canadian Public Policy, University of Toronto Press, vol. 44(2), pages 126-133, June.
    19. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumbhakar, Subal C. & Badunenko, Oleg & Willox, Michael, 2022. "Do carbon taxes affect economic and environmental efficiency? The case of British Columbia’s manufacturing plants," Energy Economics, Elsevier, vol. 115(C).
    2. Gordic, Dusan & Nikolic, Jelena & Vukasinovic, Vladimir & Josijevic, Mladen & Aleksic, Aleksandar D., 2023. "Offsetting carbon emissions from household electricity consumption in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Attílio, Luccas Assis & Faria, João Ricardo & Rodrigues, Mauro, 2023. "Does monetary policy impact CO2 emissions? A GVAR analysis," Energy Economics, Elsevier, vol. 119(C).
    4. Bai, Dongbei & Hu, Jin & Irfan, Muhammad & Hu, Mingjun, 2023. "Unleashing the impact of ecological civilization pilot policies on green technology innovation: Evidence from a novel SC-DID model," Energy Economics, Elsevier, vol. 125(C).
    5. Luccas Assis Attilio & Joao Ricardo Faria & Mauro Rodrigues, 2022. "Does monetary policy impact CO2 Emissions? A GVAR analysis," Working Papers, Department of Economics 2022_24, University of São Paulo (FEA-USP).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ott, Laurent & Weber, Sylvain, 2022. "How effective is carbon taxation on residential heating demand? A household-level analysis," Energy Policy, Elsevier, vol. 160(C).
    2. Brehm, Johannes & aus dem Moore, Nils & Gruhl, Henri, 2022. "Driving Innovation? – Carbon Tax Effects in the Swedish Transport Sector," VfS Annual Conference 2022 (Basel): Big Data in Economics 264085, Verein für Socialpolitik / German Economic Association.
    3. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    4. Pier Basaglia & Sophie Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: How Tax Salience and Fuel Substitution Mediate Climate and Health Benefits," Discussion Papers of DIW Berlin 2041, DIW Berlin, German Institute for Economic Research.
    5. Felix Pretis, 2022. "Does a Carbon Tax Reduce CO2 Emissions? Evidence from British Columbia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 115-144, September.
    6. Edward Olale & Emmanuel K. Yiridoe & Thomas O. Ochuodho & Van Lantz, 2019. "The Effect of Carbon Tax on Farm Income: Evidence from a Canadian Province," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 605-623, October.
    7. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: Causal Effects of Fuel Taxation and Mediating Mechanisms for Reducing Climate and Pollution Costs," CESifo Working Paper Series 10508, CESifo.
    8. Sileci, Lorenzo, 2023. "Carbon pricing with regressive co-benefits: evidence from British Columbia’s carbon tax," LSE Research Online Documents on Economics 121047, London School of Economics and Political Science, LSE Library.
    9. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," CIRED Working Papers halshs-03265636, HAL.
    10. Runst, Petrik & Höhle, David, 2022. "The German eco tax and its impact on CO2 emissions," Energy Policy, Elsevier, vol. 160(C).
    11. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    12. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    13. Rafaty, Ryan & Dolphin, Geoffroy & Pretis, Felix, 2021. "Carbon Pricing and the Elasticity of CO2 Emissions," RFF Working Paper Series 21-33, Resources for the Future.
    14. Bibek Adhikari, 2022. "A Guide to Using the Synthetic Control Method to Quantify the Effects of Shocks, Policies, and Shocking Policies," The American Economist, Sage Publications, vol. 67(1), pages 46-63, March.
    15. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," Working Papers halshs-03265636, HAL.
    16. Jeremy Dijk & Nathan Delacrétaz & Bruno Lanz, 2022. "Technology Adoption and Early Network Infrastructure Provision in the Market for Electric Vehicles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 631-679, November.
    17. Liu, Lirong & Huang, Charley Z. & Huang, Guohe & Baetz, Brian & Pittendrigh, Scott M., 2018. "How a carbon tax will affect an emission-intensive economy: A case study of the Province of Saskatchewan, Canada," Energy, Elsevier, vol. 159(C), pages 817-826.
    18. Yanxia Yu, 2023. "Carbon Taxes and CO2 Emissions: A Replication of Andersson (American Economic Journal: Economic Policy, 2019)," Working Papers in Economics 23/09, University of Canterbury, Department of Economics and Finance.
    19. Echevarría, Cruz A. & Hasancebi, Serhat & García-Enríquez, Javier, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    20. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.

    More about this item

    Keywords

    Carbon tax; Climate change; Policy evaluation; Emissions; Gasoline tax;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:111:y:2022:i:c:s0140988322002201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.