IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v107y2022ics0140988322000275.html
   My bibliography  Save this article

Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems

Author

Listed:
  • Silva, Rodolfo Rodrigues Barrionuevo
  • Martins, André Christóvão Pio
  • Soler, Edilaine Martins
  • Baptista, Edméa Cássia
  • Balbo, Antonio Roberto
  • Nepomuceno, Leonardo

Abstract

The Energy Procurement (EP) problem faced by a large consumer is concerned with planning the energy procurement in the various energy markets available, such that its short- and medium-term demands are met, and the risks involved in such trading are mitigated. Although a number of EP models have been proposed for purely thermal systems, no specific model has been addressed for solving this problem for a large consumer located in a hydro-dominated system. In this paper we discuss the main specific features and issues involving EP problems for hydro-dominated markets. A central issue is the estimation of future energy prices in the pool market. In hydro-dominated systems, uncertainties in incremental water inflows into reservoirs affect directly such prices, as well as the estimated demands, and these are difficult correlations to be captured by a price estimation model. In this paper, we propose a Price Scenario Generation (PSG) model to estimate future pool prices, which is able to capture spatial and temporal correlation among uncertain prices, water inflows and demands. The estimated prices obtained by the PSG are introduced in the proposed Energy Procurement Model for Hydrothermal Systems (EPMHS), which calculates the optimal procurement decisions, involving the portions of energy traded in the pool, bilateral and futures markets, as well as the self-produced energy. The proposed EPMHS is formulated as a sequence of mixed-integer two-stage stochastic linear programming problems, where pool prices are handled as uncertain parameters. The EPMHS represents trading risks using the Conditional Value at Risk (CVaR) metric. We also propose a strategy for including yearly estimation of water inflows into the EPMHS, since prices in hydro-dominated markets are generally driven by water inflows forecasts. The model proposed is applied to the generation system of the northeast region of Brazil, and the results reveal coherent correlations between hydro and economic variables.

Suggested Citation

  • Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000275
    DOI: 10.1016/j.eneco.2022.105841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322000275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodilla, Pablo & García-González, Javier & Baíllo, Álvaro & Cerisola, Santiago & Batlle, Carlos, 2015. "Hydro resource management, risk aversion and equilibrium in an incomplete electricity market setting," Energy Economics, Elsevier, vol. 51(C), pages 365-382.
    2. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    3. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Electricity procurement for large consumers based on Information Gap Decision Theory," Energy Policy, Elsevier, vol. 38(1), pages 234-242, January.
    4. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    5. Botterud, Audun & Kristiansen, Tarjei & Ilic, Marija D., 2010. "The relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 32(5), pages 967-978, September.
    6. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    7. Parlane, Sarah & Ryan, Lisa, 2020. "Optimal contracts for renewable electricity," Energy Economics, Elsevier, vol. 91(C).
    8. Y Shi & F Wu & L K Chu & D Sculli & Y H Xu, 2011. "A portfolio approach to managing procurement risk using multi-stage stochastic programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1958-1970, November.
    9. Contreras, Javier & Rodríguez, Yeny E. & Sosa, Aníbal, 2017. "Construction of an efficient portfolio of power purchase decisions based on risk-diversification tradeoff," Energy Economics, Elsevier, vol. 64(C), pages 286-297.
    10. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    11. Ferreira, Pedro Guilherme Costa & Oliveira, Fernando Luiz Cyrino & Souza, Reinaldo Castro, 2015. "The stochastic effects on the Brazilian Electrical Sector," Energy Economics, Elsevier, vol. 49(C), pages 328-335.
    12. Cerisola, Santiago & Latorre, Jesus M. & Ramos, Andres, 2012. "Stochastic dual dynamic programming applied to nonconvex hydrothermal models," European Journal of Operational Research, Elsevier, vol. 218(3), pages 687-697.
    13. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    14. Bierbrauer, Michael & Menn, Christian & Rachev, Svetlozar T. & Truck, Stefan, 2007. "Spot and derivative pricing in the EEX power market," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3462-3485, November.
    15. Y Shi & F Wu & L K Chu & D Sculli & Y H Xu, 2011. "A portfolio approach to managing procurement risk using multi-stage stochastic programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1958-1970, November.
    16. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    17. Zhou, Fan & Page, Lionel & Perrons, Robert K. & Zheng, Zuduo & Washington, Simon, 2019. "Long-term forecasts for energy commodities price: What the experts think," Energy Economics, Elsevier, vol. 84(C).
    18. de Oliveira, Francisco Alexandre & de Paiva, Anderson Paulo & Lima, José Wanderley Marangon & Balestrassi, Pedro Paulo & Mendes, Ronã Rinston Amaury, 2011. "Portfolio optimization using Mixture Design of Experiments: Scheduling trades within electricity markets," Energy Economics, Elsevier, vol. 33(1), pages 24-32, January.
    19. Mahmood Akbari & Peter Overloop & Abbas Afshar, 2011. "Clustered K Nearest Neighbor Algorithm for Daily Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1341-1357, March.
    20. Ferrara, Massimiliano & Violi, Antonio & Beraldi, Patrizia & Carrozzino, Gianluca & Ciano, Tiziana, 2021. "An integrated decision approach for energy procurement and tariff definition for prosumers aggregations," Energy Economics, Elsevier, vol. 97(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Trespalacios & Lina M. Cortés & Javier Perote, 2021. "Modeling Electricity Price and Quantity Uncertainty: An Application for Hedging with Forward Contracts," Energies, MDPI, vol. 14(11), pages 1-26, June.
    2. Juan M. Gómez & Yeny E. Rodríguez, 2022. "Multiperiod Portfolio of Energy Purchasing Strategies including Climate Scenarios," Energies, MDPI, vol. 15(9), pages 1-25, April.
    3. Parlane, Sarah & Ryan, Lisa, 2020. "Optimal contracts for renewable electricity," Energy Economics, Elsevier, vol. 91(C).
    4. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    5. Daniel Poh & Stephen Roberts & Martin Tegn'er, 2019. "A Machine Learning approach to Risk Minimisation in Electricity Markets with Coregionalized Sparse Gaussian Processes," Papers 1903.09536, arXiv.org, revised Apr 2019.
    6. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    7. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    8. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    9. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    10. Arthur Lauro & Daniel Kitamura & Waleska Lima & Bruno Dias & Tiago Soares, 2023. "Considering Forward Electricity Prices for a Hydro Power Plant Risk Analysis in the Brazilian Electricity Market," Energies, MDPI, vol. 16(3), pages 1-13, January.
    11. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    12. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    13. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. Boroumand, Raphaël-Homayoun & Goutte, Stéphane & Guesmi, Khaled & Porcher, Thomas, 2019. "Potential benefits of optimal intra-day electricity hedging for the environment: The perspective of electricity retailers," Energy Policy, Elsevier, vol. 132(C), pages 1120-1129.
    15. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    16. Zhang, Yuanyuan & Zhao, Huiru & Li, Bingkang & Zhao, Yihang & Qi, Ze, 2022. "Research on credit rating and risk measurement of electricity retailers based on Bayesian Best Worst Method-Cloud Model and improved Credit Metrics model in China's power market," Energy, Elsevier, vol. 252(C).
    17. Souhir, Ben Amor & Heni, Boubaker & Lotfi, Belkacem, 2019. "Price risk and hedging strategies in Nord Pool electricity market evidence with sector indexes," Energy Economics, Elsevier, vol. 80(C), pages 635-655.
    18. Stefan Trück & Rafał Weron, 2016. "Convenience Yields and Risk Premiums in the EU‐ETS—Evidence from the Kyoto Commitment Period," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 587-611, June.
    19. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    20. Kyriaki Psara & Christina Papadimitriou & Marily Efstratiadi & Sotiris Tsakanikas & Panos Papadopoulos & Paul Tobin, 2022. "European Energy Regulatory, Socioeconomic, and Organizational Aspects: An Analysis of Barriers Related to Data-Driven Services across Electricity Sectors," Energies, MDPI, vol. 15(6), pages 1-25, March.

    More about this item

    Keywords

    Energy procurement in electricity markets; Portfolio optimization problem; Large consumers; Medium-term hydrothermal scheduling;
    All these keywords.

    JEL classification:

    • D00 - Microeconomics - - General - - - General
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.