IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v107y2022ics0140988322000068.html
   My bibliography  Save this article

Clean energy substitution: The effect of transitioning from coal to gas on air pollution

Author

Listed:
  • Zeng, Jingjing
  • Bao, Rui
  • McFarland, Michael

Abstract

Air pollution from energy represents a global challenge. China, in particular, is facing a trade-off between growing demands for energy and worsening energy-related air pollution. Energy transition policies were adopted in mainland China in an attempt to reduce air pollutant emissions. This study investigated the causal impact of coal-to-gas (CTG) policies — programs that substitute “dirty” coal for “clean” natural gas — on air pollution. Using a spatial difference-in-difference analysis, we found that the implementation of CTG policies was strongly associated with reduced air pollution. On average, cities that transitioned to gas witnessed a 5.9 and 1.2% drop per year in SO2 and PM2.5 emissions, respectively. Having a neighboring city adopt a CTG policy was also beneficial as it led to a 7.0 and 3.8% reduction in SO2 and PM2.5 emissions. Sensitivity analysis confirmed that these effects were due to the expansion of natural gas use. Further, our study found that the effects of CTG policies on air pollution levels varied by region. CTG policies reduced both SO2 and PM2.5 levels in Southern cities but had no meaningful impacts on Northern cities. Our findings provide a strong rationale for local governments and decision-makers to enact reasonable urban clean energy substitution policies that reduce coal consumption.

Suggested Citation

  • Zeng, Jingjing & Bao, Rui & McFarland, Michael, 2022. "Clean energy substitution: The effect of transitioning from coal to gas on air pollution," Energy Economics, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000068
    DOI: 10.1016/j.eneco.2022.105816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322000068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    2. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    3. Douglas Almond & Yuyu Chen & Michael Greenstone & Hongbin Li, 2009. "Winter Heating or Clean Air? Unintended Impacts of China's Huai River Policy," American Economic Review, American Economic Association, vol. 99(2), pages 184-190, May.
    4. Wang, Yangjie & Chen, Xiaohong & Ren, Shenggang, 2019. "Clean energy adoption and maternal health: Evidence from China," Energy Economics, Elsevier, vol. 84(C).
    5. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    6. Akadiri, Ada Chigozie & Akadiri, Seyi Saint & Gungor, Hasan, 2019. "The role of natural gas consumption in Saudi Arabia's output and its implication for trade and environmental quality," Energy Policy, Elsevier, vol. 129(C), pages 230-238.
    7. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    8. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    9. Mao, Xianqiang & Guo, Xiurui & Chang, Yongguan & Peng, Yingdeng, 2005. "Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications," Energy Policy, Elsevier, vol. 33(3), pages 307-318, February.
    10. Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
    11. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    12. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.
    13. Lueken, Roger & Klima, Kelly & Griffin, W. Michael & Apt, Jay, 2016. "The climate and health effects of a USA switch from coal to gas electricity generation," Energy, Elsevier, vol. 109(C), pages 1160-1166.
    14. Huang, Lingyun & Zou, Yanjun, 2020. "How to promote energy transition in China: From the perspectives of interregional relocation and environmental regulation," Energy Economics, Elsevier, vol. 92(C).
    15. Tom Wigley, 2011. "Coal to gas: the influence of methane leakage," Climatic Change, Springer, vol. 108(3), pages 601-608, October.
    16. McGlade, Christophe & Pye, Steve & Ekins, Paul & Bradshaw, Michael & Watson, Jim, 2018. "The future role of natural gas in the UK: A bridge to nowhere?," Energy Policy, Elsevier, vol. 113(C), pages 454-465.
    17. Ozturk, Ilhan & Al-Mulali, Usama, 2015. "Natural gas consumption and economic growth nexus: Panel data analysis for GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 998-1003.
    18. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xueyang & Sun, Xiumei & Ahmad, Mahmood & Zhang, Haotian, 2023. "Does low carbon energy transition impede air pollution? Evidence from China's coal-to-gas policy," Resources Policy, Elsevier, vol. 83(C).
    2. Chen, Jie & Huang, Shoujun & Ajaz, Tahseen, 2022. "Natural resources management and technological innovation under EKC framework: A glimmer of hope for sustainable environment in newly industrialized countries," Resources Policy, Elsevier, vol. 79(C).
    3. Liu, Meihan & Baisheng, Shi & Alharthi, Majed & Hassan, Muhammad Shahid & Hanif, Imran, 2023. "The role of natural resources, clean energy and technology in mitigating carbon emissions in top populated countries," Resources Policy, Elsevier, vol. 83(C).
    4. Jun-Yi Zheng & Wan-Gang Lv & Jie Shen & Mei Sun, 2022. "Study on the Impact of the Healthy Cities Pilot Policy on Industrial Structure Upgrading: Quasi-Experimental Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    5. Tinta, Abdoulganiour Almame, 2023. "Education puzzle, financial inclusion, and energy substitution: Growth Scales," Energy Policy, Elsevier, vol. 175(C).
    6. Huang, Xiaoling & Tian, Peng, 2023. "Polluting thy neighbor or benefiting thy neighbor: Effects of the clean energy development on haze pollution in China," Energy, Elsevier, vol. 268(C).
    7. Dianyuan Ma & Hui Sun & Xuechao Xia & Yan Zhao, 2022. "The Impact of Government and Public Dual-Subject Environmental Concerns on Urban Haze Pollution: An Empirical Research on 279 Cities in China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    8. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    9. Xu, Xiaofeng & Cui, Xiaodan & Chen, Xiangyu & Zhou, Yichen, 2022. "Impact of government subsidies on the innovation performance of the photovoltaic industry: Based on the moderating effect of carbon trading prices," Energy Policy, Elsevier, vol. 170(C).
    10. Yu, Lu & Liu, Yinwei & Niu, Yiran & Xiao, Zumian, 2023. "Greener together: The impact of China's mixed-ownership reform on firm carbon emissions," Energy Policy, Elsevier, vol. 180(C).
    11. Li, Hui & Zhang, Ruining & Ai, Xianneng, 2022. "Cost estimation of “coal-to-gas” project: Government and residents’ perspectives," Energy Policy, Elsevier, vol. 167(C).
    12. Chen, Jun, 2023. "Mitigating nitrogen dioxide air pollution: The roles and effect of national smart city pilots in China," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    2. Wang, Xueyang & Sun, Xiumei & Ahmad, Mahmood & Zhang, Haotian, 2023. "Does low carbon energy transition impede air pollution? Evidence from China's coal-to-gas policy," Resources Policy, Elsevier, vol. 83(C).
    3. Li, Hui & Zhao, Jun & Zhang, Ruining & Hou, Bingdong, 2022. "The natural gas consumption and mortality nexus: A mediation analysis," Energy, Elsevier, vol. 248(C).
    4. Sarvar Gurbanov, 2021. "Role of Natural Gas Consumption in the Reduction of CO 2 Emissions: Case of Azerbaijan," Energies, MDPI, vol. 14(22), pages 1-14, November.
    5. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    6. Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
    7. Xu, Shuo & Ge, Jianping, 2020. "Sustainable shifting from coal to gas in North China: An analysis of resident satisfaction," Energy Policy, Elsevier, vol. 138(C).
    8. Wu, Shu, 2022. "Household fuel switching and the elderly's health: Evidence from rural China," Energy, Elsevier, vol. 240(C).
    9. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).
    10. Xuan Yang & Yue Wang & Di Chen & Xue Tan & Xue Tian & Lei Shi, 2021. "Does the “Blue Sky Defense War Policy” Paint the Sky Blue?—A Case Study of Beijing–Tianjin–Hebei Region, China," IJERPH, MDPI, vol. 18(23), pages 1-25, November.
    11. Mei, Yingdan & Gao, Li & Zhang, Wendong & Yang, Feng-An, 2021. "Do homeowners benefit when coal-fired power plants switch to natural gas? Evidence from Beijing, China," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    12. Hao Chen & Ling He & Jiachuan Chen & Bo Yuan & Teng Huang & Qi Cui, 2019. "Impacts of Clean Energy Substitution for Polluting Fossil-Fuels in Terminal Energy Consumption on the Economy and Environment in China," Sustainability, MDPI, vol. 11(22), pages 1-29, November.
    13. Dong, Kangyin & Jiang, Qingzhe & Shahbaz, Muhammad & Zhao, Jun, 2021. "Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China," Energy Economics, Elsevier, vol. 99(C).
    14. Mohammed AlKhars & Fazlul Miah & Hassan Qudrat-Ullah & Aymen Kayal, 2020. "A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries," Sustainability, MDPI, vol. 12(9), pages 1-43, May.
    15. Siyu Chen & Hong Chi, 2021. "Analysis of the Environmental Effects of the Clean Heating Policy in Northern China," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    16. Salim Hamza Ringim & Abdulkareem Alhassan & Hasan Güngör & Festus Victor Bekun, 2022. "Economic Policy Uncertainty and Energy Prices: Empirical Evidence from Multivariate DCC-GARCH Models," Energies, MDPI, vol. 15(10), pages 1-18, May.
    17. Shu Wu, 2021. "The Health Impact of Household Cooking Fuel Choice on Women: Evidence from China," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    18. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    19. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    20. Li, Ke & Yuan, Weihong & Li, Jianglong & Ai, Hongshan, 2021. "Effects of time-dependent environmental regulations on air pollution: Evidence from the Changsha-Zhuzhou-Xiangtan region, China," World Development, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.