IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i3p999-1017.html
   My bibliography  Save this article

A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems

Author

Listed:
  • Koulamas, Christos
  • Kyparisis, George J.

Abstract

We review dynamic programming (DP) algorithms utilized to solve offline deterministic single-machine scheduling problems. We classify DP algorithms based on problem properties and provide insights on how these properties facilitate the use of specific types of DP algorithms. These properties center on whether jobs in a schedule can be naturally partitioned into subsets or whether a complete schedule is the outcome of blending distinct subsequences and/or whether the overall scheduling objective is a compromise of conflicting objectives. We propose generalizations of existing DP algorithms so they can be applied to more general problems such as proportionate flow shops. In some cases, we show how the running time of a DP algorithm can be improved. We also survey models where a DP formulation is part of a hybrid enumerative algorithm. A discussion on how pseudo-polynomial DP algorithms can be converted to fully polynomial time approximation schemes is also presented. We conclude our review with a timeline of DP algorithmic development during the last 50 years.

Suggested Citation

  • Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:999-1017
    DOI: 10.1016/j.ejor.2022.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722002697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquale Avella & Maurizio Boccia & Bernardo D’Auria, 2005. "Near-Optimal Solutions of Large-Scale Single-Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 183-191, May.
    2. R. N. Burns & G. Steiner, 1981. "Single Machine Scheduling with Series-Parallel Precedence Constraints," Operations Research, INFORMS, vol. 29(6), pages 1195-1207, December.
    3. Xin Chen & Sergey Kovalev & Małgorzata Sterna & Jacek Błażewicz, 2021. "Mirror scheduling problems with early work and late work criteria," Journal of Scheduling, Springer, vol. 24(5), pages 483-487, October.
    4. Jianzhong Du & Joseph Y.-T. Leung, 1990. "Minimizing Total Tardiness on One Machine is NP-Hard," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 483-495, August.
    5. Dvir Shabtay & Daniel Oron, 2016. "Proportionate flow-shop scheduling with rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(5), pages 752-769, May.
    6. Christos Koulamas, 2014. "A note on the scheduling problem with revised delivery times and job-dependent tardiness penalties," IISE Transactions, Taylor & Francis Journals, vol. 46(6), pages 619-622, June.
    7. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    8. Clyde L. Monma & Chris N. Potts, 1989. "On the Complexity of Scheduling with Batch Setup Times," Operations Research, INFORMS, vol. 37(5), pages 798-804, October.
    9. Gerhard J. Woeginger, 1999. "An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 211-216, May.
    10. Dvir Shabtay & Nufar Gaspar & Liron Yedidsion, 2012. "A bicriteria approach to scheduling a single machine with job rejection and positional penalties," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 395-424, May.
    11. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    12. Kenneth R. Baker & Linus E. Schrage, 1978. "Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence-Related Tasks," Operations Research, INFORMS, vol. 26(1), pages 111-120, February.
    13. Baruch Mor & Dana Shapira, 2020. "Scheduling with regular performance measures and optional job rejection on a single machine," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1315-1325, August.
    14. A. M. A. Hariri & C. N. Potts, 1994. "Single Machine Scheduling with Deadlines to Minimize the Weighted Number of Tardy Jobs," Management Science, INFORMS, vol. 40(12), pages 1712-1719, December.
    15. Potts, C.N. & Van Wassenhove, L.N., 1987. "Dynamic programming and decomposition approaches for the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 32(3), pages 405-414, December.
    16. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1992. "On the Minimization of Completion Time Variance with a Bicriteria Extension," Operations Research, INFORMS, vol. 40(6), pages 1148-1155, December.
    17. Yin, Yunqiang & Cheng, T.C.E. & Hsu, Chou-Jung & Wu, Chin-Chia, 2013. "Single-machine batch delivery scheduling with an assignable common due window," Omega, Elsevier, vol. 41(2), pages 216-225.
    18. Lingfa Lu & Liqi Zhang, 2017. "Single-machine scheduling with production and rejection costs to minimize the maximum earliness," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 331-342, August.
    19. C. N. Potts & L. N. Van Wassenhove, 1988. "Algorithms for Scheduling a Single Machine to Minimize the Weighted Number of Late Jobs," Management Science, INFORMS, vol. 34(7), pages 843-858, July.
    20. Reddy Dondeti, V. & Mohanty, Bidhu B., 1998. "Impact of learning and fatigue factors on single machine scheduling with penalties for tardy jobs," European Journal of Operational Research, Elsevier, vol. 105(3), pages 509-524, March.
    21. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    22. C. N. Potts & L. N. Van Wassenhove, 1992. "Single Machine Scheduling to Minimize Total Late Work," Operations Research, INFORMS, vol. 40(3), pages 586-595, June.
    23. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    24. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.
    25. Weng, Michael X. & Ventura, Jose A., 1996. "Single-machine earliness-tardiness scheduling about a common due date with tolerances," International Journal of Production Economics, Elsevier, vol. 42(3), pages 217-227, April.
    26. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    27. J. J. Kanet, 2007. "New Precedence Theorems for One-Machine Weighted Tardiness," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 579-588, August.
    28. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    29. Richard K. Congram & Chris N. Potts & Steef L. van de Velde, 2002. "An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 52-67, February.
    30. Koulamas, Christos & Kyparisis, George J., 2019. "New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives," European Journal of Operational Research, Elsevier, vol. 278(1), pages 149-159.
    31. Koulamas, Christos & Kyparisis, George J., 2008. "Single-machine scheduling problems with past-sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1045-1049, June.
    32. André Gascon & Robert C. Leachman, 1988. "A Dynamic Programming Solution to the Dynamic, Multi-Item, Single-Machine Scheduling Problem," Operations Research, INFORMS, vol. 36(1), pages 50-56, February.
    33. Christos Koulamas & George Steiner, 2021. "New results for scheduling to minimize tardiness on one machine with rejection and related problems," Journal of Scheduling, Springer, vol. 24(1), pages 27-34, February.
    34. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    35. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    36. S.S. Panwalkar & Christos Koulamas, 2015. "Proportionate flow shop: New complexity results and models with due date assignment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(2), pages 98-106, March.
    37. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
    38. Baruch Mor & Gur Mosheiov, 2021. "A note on the single machine CON and CONW problems with lot scheduling," Journal of Combinatorial Optimization, Springer, vol. 42(2), pages 327-338, August.
    39. Nicholas G. Hall & Chris N. Potts, 2010. "Rescheduling for Job Unavailability," Operations Research, INFORMS, vol. 58(3), pages 746-755, June.
    40. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
    41. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    42. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    43. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    44. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    45. George Steiner & Rui Zhang, 2011. "Revised Delivery-Time Quotation in Scheduling with Tardiness Penalties," Operations Research, INFORMS, vol. 59(6), pages 1504-1511, December.
    46. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
    47. Christos Koulamas & S.S. Panwalkar, 2019. "The two-stage no-wait/blocking proportionate super shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 2956-2965, May.
    48. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    49. Chen, Zhi-Long, 1996. "Scheduling and common due date assignment with earliness-tardiness penalties and batch delivery costs," European Journal of Operational Research, Elsevier, vol. 93(1), pages 49-60, August.
    50. Ibaraki, Toshihide & Nakamura, Yuichi, 1994. "A dynamic programming method for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 76(1), pages 72-82, July.
    51. Nicholas G. Hall & Wieslaw Kubiak & Suresh P. Sethi, 1991. "Earliness–Tardiness Scheduling Problems, II: Deviation of Completion Times About a Restrictive Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 847-856, October.
    52. Dvir Shabtay & George Steiner, 2007. "Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 332-350, March.
    53. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    54. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    55. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    56. George Steiner, 1984. "Single Machine Scheduling with Precedence Constraints of Dimension 2," Mathematics of Operations Research, INFORMS, vol. 9(2), pages 248-259, May.
    57. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    58. Koulamas, Christos, 2020. "The proportionate flow shop total tardiness problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 439-444.
    59. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    60. Christos Koulamas & George J. Kyparisis, 2021. "The no-wait flow shop with rejection," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1852-1859, March.
    61. Michael H. Rothkopf, 1966. "Scheduling Independent Tasks on Parallel Processors," Management Science, INFORMS, vol. 12(5), pages 437-447, January.
    62. Enrique Gerstl & Gur Mosheiov, 2021. "The single machine CON problem with unavailability period," International Journal of Production Research, Taylor & Francis Journals, vol. 59(3), pages 824-838, February.
    63. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    64. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    65. Baruch Mor & Gur Mosheiov & Dana Shapira, 2021. "Single machine lot scheduling with optional job-rejection," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 1-11, January.
    66. J. A. Hoogeveen & S. L. van de Velde, 1997. "Earliness-Tardiness Scheduling Around Almost Equal Due Dates," INFORMS Journal on Computing, INFORMS, vol. 9(1), pages 92-99, February.
    67. Gerodimos, Alex E. & Glass, Celia A. & Potts, Chris N., 2000. "Scheduling the production of two-component jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 120(2), pages 250-259, January.
    68. Lee, C. -Y. & Leon, V. J., 2001. "Machine scheduling with a rate-modifying activity," European Journal of Operational Research, Elsevier, vol. 128(1), pages 119-128, January.
    69. Enrique Gerstl & Gur Mosheiov, 2017. "Single machine scheduling problems with generalised due-dates and job-rejection," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3164-3172, June.
    70. Cheng, T. C. Edwin & Gordon, Valery S. & Kovalyov, Mikhail Y., 1996. "Single machine scheduling with batch deliveries," European Journal of Operational Research, Elsevier, vol. 94(2), pages 277-283, October.
    71. Klamroth, Kathrin & Wiecek, Margaret M., 2001. "A time-dependent multiple criteria single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 135(1), pages 17-26, November.
    72. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    73. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    74. Leslie A. Hall & David B. Shmoys, 1992. "Jackson's Rule for Single-Machine Scheduling: Making a Good Heuristic Better," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 22-35, February.
    75. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    76. Gordon, Valery S. & Strusevich, Vitaly A., 2009. "Single machine scheduling and due date assignment with positionally dependent processing times," European Journal of Operational Research, Elsevier, vol. 198(1), pages 57-62, October.
    77. Linus Schrage & Kenneth R. Baker, 1978. "Dynamic Programming Solution of Sequencing Problems with Precedence Constraints," Operations Research, INFORMS, vol. 26(3), pages 444-449, June.
    78. Nicholas G. Hall & Marc E. Posner, 1991. "Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 836-846, October.
    79. Koulamas, Christos, 2011. "A unified solution approach for the due date assignment problem with tardy jobs," International Journal of Production Economics, Elsevier, vol. 132(2), pages 292-295, August.
    80. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    81. Gregory H. Graves & Chung‐Yee Lee, 1999. "Scheduling maintenance and semiresumable jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 845-863, October.
    82. Tanaka, Shunji & Sato, Shun, 2013. "An exact algorithm for the precedence-constrained single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 345-352.
    83. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    84. Sylvie Gélinas & Francois Soumis, 1997. "A dynamic programming algorithm for single machine scheduling with ready times," Annals of Operations Research, Springer, vol. 69(0), pages 135-156, January.
    85. Zhang, Liqi & Lu, Lingfa & Yuan, Jinjiang, 2009. "Single machine scheduling with release dates and rejection," European Journal of Operational Research, Elsevier, vol. 198(3), pages 975-978, November.
    86. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    87. Uttarayan Bagchi, 1989. "Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems," Operations Research, INFORMS, vol. 37(1), pages 118-125, February.
    88. M. Y. Kovalyov & C. N. Potts & L. N. van Wassenhove, 1994. "A Fully Polynomial Approximation Scheme for Scheduling a Single Machine to Minimize Total Weighted Late Work," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 86-93, February.
    89. Weiya Zhong & Zhiming Huo, 2013. "Single machine scheduling problems with subcontracting options," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 489-498, October.
    90. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
    91. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    2. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    5. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    6. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    7. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    8. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    9. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    10. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.
    11. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
    12. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    13. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    14. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
    15. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    16. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    17. S.S. Panwalkar & Christos Koulamas, 2015. "On equivalence between the proportionate flow shop and single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 595-603, October.
    18. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    19. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    20. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:999-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.