IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i3p911-919.html
   My bibliography  Save this article

A general inspection and opportunistic replacement policy for one-component systems of variable quality

Author

Listed:
  • Cavalcante, C.A.V.
  • Lopes, R.S.
  • Scarf, P.A.

Abstract

We model the influence of opportunities in a hybrid inspection and replacement policy. The base policy has two phases: an initial inspection phase in which the system is replaced if found defective; and a later wear-out phase that terminates with replacement and during which there is no inspection. The efficacy of inspection is modelled using the delay time concept. Onto this base model, we introduce events that arise at random and offer opportunities for cost-efficient replacement, and we investigate the efficacy of additional opportunistic replacements within the policy. Furthermore, replacements are considered to be heterogeneous and of variable quality. This is a natural policy for heterogeneous systems. Our analysis suggests that a policy extension that allows opportunities to be utilised offers benefit, in terms of cost-efficiency. This benefit is significant compared to those offered by age-based inspection or preventive replacement. In addition, opportunistic replacement may simplify maintenance planning.

Suggested Citation

  • Cavalcante, C.A.V. & Lopes, R.S. & Scarf, P.A., 2018. "A general inspection and opportunistic replacement policy for one-component systems of variable quality," European Journal of Operational Research, Elsevier, vol. 266(3), pages 911-919.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:911-919
    DOI: 10.1016/j.ejor.2017.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717309451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarf, Philip A., 1997. "On the application of mathematical models in maintenance," European Journal of Operational Research, Elsevier, vol. 99(3), pages 493-506, June.
    2. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    3. Adiel Teixeira de Almeida & Cristiano Alexandre Virgínio Cavalcante & Marcelo Hazin Alencar & Rodrigo José Pires Ferreira & Adiel Teixeira de Almeida-Filho & Thalles Vitelli Garcez, 2015. "Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis," International Series in Operations Research and Management Science, Springer, edition 127, number 978-3-319-17969-8, December.
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "On information-based warranty policy for repairable products from heterogeneous populationAuthor-Name: Lee, Hyunju," European Journal of Operational Research, Elsevier, vol. 253(1), pages 204-215.
    5. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V. & Dwight, R.A., 2013. "Imperfect inspection and replacement of a system with a defective state: A cost and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 80-87.
    6. Laggoune, Radouane & Chateauneuf, Alaa & Aissani, Djamil, 2010. "Impact of few failure data on the opportunistic replacement policy for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 108-119.
    7. Dekker, Rommert & Smeitink, Eric, 1991. "Opportunity-based block replacement," European Journal of Operational Research, Elsevier, vol. 53(1), pages 46-63, July.
    8. Scarf, Philip A. & Cavalcante, Cristiano A.V., 2010. "Hybrid block replacement and inspection policies for a multi-component system with heterogeneous component lives," European Journal of Operational Research, Elsevier, vol. 206(2), pages 384-394, October.
    9. Wildeman, R. E. & Dekker, R. & Smit, A. C. J. M., 1997. "A dynamic policy for grouping maintenance activities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 530-551, June.
    10. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    11. Xia, Tangbin & Xi, Lifeng & Pan, Ershun & Ni, Jun, 2017. "Reconfiguration-oriented opportunistic maintenance policy for reconfigurable manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 87-98.
    12. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S., 2015. "Multi-criteria model to support the definition of opportunistic maintenance policy: A study in a cogeneration system," Energy, Elsevier, vol. 80(C), pages 32-40.
    13. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    14. Berrade, M.D. & Cavalcante, Cristiano A.V. & Scarf, Philip A., 2012. "Maintenance scheduling of a protection system subject to imperfect inspection and replacement," European Journal of Operational Research, Elsevier, vol. 218(3), pages 716-725.
    15. W Wang & P A Scarf & M A J Smith, 2000. "On the application of a model of condition-based maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1218-1227, November.
    16. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Single versus mixture Weibull distributions for nonparametric satellite reliability," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 295-300.
    17. Scarf, Philip A. & Cavalcante, Cristiano A.V., 2012. "Modelling quality in replacement and inspection maintenance," International Journal of Production Economics, Elsevier, vol. 135(1), pages 372-381.
    18. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    19. A H Christer, 1999. "Developments in delay time analysis for modelling plant maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1120-1137, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Alberti, Alexandre R. & Cavalcante, Cristiano A.V., 2020. "A two-scale maintenance policy for protection systems subject to shocks when meeting demands," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio, 2022. "A study on the economic and environmental viability of second-hand items in maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Zhou, Xiaojun & Ning, Xiaohan, 2021. "Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Li Yang & Yu Zhao & Xiaobing Ma & Qingan Qiu, 2018. "An optimal inspection and replacement policy for a two-unit system," Journal of Risk and Reliability, , vol. 232(6), pages 766-776, December.
    8. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    11. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    12. Truong-Ba, Huy & Cholette, Michael E. & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2021. "Condition-based inspection policies for boiler heat exchangers," European Journal of Operational Research, Elsevier, vol. 291(1), pages 232-243.
    13. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    14. Aseem K. Mishra & Divya Shrivastava & Prem Vrat, 2020. "An opportunistic group maintenance model for the multi-unit series system employing Jaya algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 603-628, June.
    15. Wu, Jing & Qian, Cunhua & Dohi, Tadashi, 2024. "Optimal opportunity-based age replacement policies in discrete time," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Sinisterra, Wilfrido Quiñones & Cavalcante, Cristiano Alexandre Virgínio, 2020. "An integrated model of production scheduling and inspection planning for resumable jobs," International Journal of Production Economics, Elsevier, vol. 227(C).
    17. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    19. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.
    20. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    21. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Dai, Wei, 2024. "Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    2. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    4. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    5. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    6. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio, 2022. "A study on the economic and environmental viability of second-hand items in maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    9. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    10. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    11. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Wang, Huiying & Wang, Wenbin & Peng, Rui, 2017. "A two-phase inspection model for a single component system with three-stage degradation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 31-40.
    13. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.
    14. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
    16. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    17. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    18. Wang, Wenbin & Zhao, Fei & Peng, Rui, 2014. "A preventive maintenance model with a two-level inspection policy based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 207-220.
    19. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    20. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:911-919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.