IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v99y1997i3p530-551.html
   My bibliography  Save this article

A dynamic policy for grouping maintenance activities

Author

Listed:
  • Wildeman, R. E.
  • Dekker, R.
  • Smit, A. C. J. M.

Abstract

A maintenance activity carried out on a technical system often involves a system-dependent set-up cost that is the same for all maintenance activities carried out on that system. Grouping activities thus saves costs since execution of a group of activities requires only one set-up. Many maintenance models consider the grouping of maintenance activities on a long-term basis with an infinite horizon. This makes it very difficult to incorporate short-term circumstances such as opportunities or a varying use of components because these are either not known beforehand or make the problem intractable. In this paper we propose a rolling-horizon approach that takes a long-term tentative plan as a basis for a subsequent adaptation according to information that becomes available on the short term. This yields a dynamic grouping policy that assists the maintenance manager in his planning job. We present a fast approach that allows interactive planning by showing how shifts from the tentative planning work out. We illustrate our approach with examples.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Wildeman, R. E. & Dekker, R. & Smit, A. C. J. M., 1997. "A dynamic policy for grouping maintenance activities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 530-551, June.
  • Handle: RePEc:eee:ejores:v:99:y:1997:i:3:p:530-551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00319-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. van Dijkhuizen, Gerhard & van Harten, Aart, 1997. "Optimal clustering of frequency-constrained maintenance jobs with shared set-ups," European Journal of Operational Research, Elsevier, vol. 99(3), pages 552-564, June.
    2. A. K. Chakravarty & J. B. Orlin & U. G. Rothblum, 1982. "Technical Note—A Partitioning Problem with Additive Objective with an Application to Optimal Inventory Groupings for Joint Replenishment," Operations Research, INFORMS, vol. 30(5), pages 1018-1022, October.
    3. van der Duyn Schouten, F. A. & Vanneste, S. G., 1990. "Analysis and computation of (n, N)-strategies for maintenance of a two-component system," European Journal of Operational Research, Elsevier, vol. 48(2), pages 260-274, September.
    4. Dekker, R. & Wildeman, R. E. & van Egmond, R., 1996. "Joint replacement in an operational planning phase," European Journal of Operational Research, Elsevier, vol. 91(1), pages 74-88, May.
    5. Dekker, Rommert & Roelvink, Ingrid F. K., 1995. "Marginal cost criteria for preventive replacement of a group of components," European Journal of Operational Research, Elsevier, vol. 84(2), pages 467-480, July.
    6. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    7. Dekker, Rommert, 1995. "Integrating optimisation, priority setting, planning and combining of maintenance activities," European Journal of Operational Research, Elsevier, vol. 82(2), pages 225-240, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    2. Scarf, Philip A., 1997. "On the application of mathematical models in maintenance," European Journal of Operational Research, Elsevier, vol. 99(3), pages 493-506, June.
    3. Markus Bohlin & Mathias Wärja, 2015. "Maintenance optimization with duration-dependent costs," Annals of Operations Research, Springer, vol. 224(1), pages 1-23, January.
    4. Dekker, Rommert, 1995. "Integrating optimisation, priority setting, planning and combining of maintenance activities," European Journal of Operational Research, Elsevier, vol. 82(2), pages 225-240, April.
    5. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.
    6. Dekker, R. & Wildeman, R. E. & van Egmond, R., 1996. "Joint replacement in an operational planning phase," European Journal of Operational Research, Elsevier, vol. 91(1), pages 74-88, May.
    7. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    8. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    9. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    10. Vimal Vijayan & Sanjay K Chaturvedi, 2021. "Multi-component maintenance grouping optimization based on stochastic dependency," Journal of Risk and Reliability, , vol. 235(2), pages 293-305, April.
    11. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    12. van Dijkhuizen, Gerhard & van Harten, Aart, 1997. "Optimal clustering of frequency-constrained maintenance jobs with shared set-ups," European Journal of Operational Research, Elsevier, vol. 99(3), pages 552-564, June.
    13. Laggoune, Radouane & Chateauneuf, Alaa & Aissani, Djamil, 2010. "Impact of few failure data on the opportunistic replacement policy for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 108-119.
    14. Liu, Gia-Shie, 2011. "Dynamic group instantaneous replacement policies for unreliable Markovian service systems," International Journal of Production Economics, Elsevier, vol. 130(2), pages 203-217, April.
    15. Zhang, Xiaohong & Zeng, Jianchao, 2015. "A general modeling method for opportunistic maintenance modeling of multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 176-190.
    16. Wijnmalen, Diederik J. D. & Hontelez, Jan A. M., 1997. "Coordinated condition-based repair strategies for components of a multi-component maintenance system with discounts," European Journal of Operational Research, Elsevier, vol. 98(1), pages 52-63, April.
    17. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    18. Mazouch, P. & Krejčí, I., 2016. "The Analysis of the Age Structure of Regional Fixed Capital in the Agriculture," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 8(2), pages 1-13, June.
    19. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    20. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:99:y:1997:i:3:p:530-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.