IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i3p1017-1027.html
   My bibliography  Save this article

The steel industry: A mathematical model under environmental regulations

Author

Listed:
  • Riccardi, R.
  • Bonenti, F.
  • Allevi, E.
  • Avanzi, C.
  • Gnudi, A.

Abstract

In this work, a spatial equilibrium problem is formulated for analyzing the impact of the application of the EU-ETS on the steel industry that has historically seen Europe as one of its major producers. The developed model allows us to simultaneously represent the interactions of several market players, to endogenously determine output and steel prices and to analyze the investment in the Carbon Capture and Storage (CCS) technology. In addition, the proposed model supports the evaluation of the CO2 emission costs on the basis of Directive 2009/29/EC, the “20-20-20” targets, and the Energy Roadmap 2050. In this light, two main processes for steelmaking have to be considered: integrated mills (BOF) and Electric Arc Furnace (EAF) in minimills.

Suggested Citation

  • Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:3:p:1017-1027
    DOI: 10.1016/j.ejor.2014.10.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    2. Obernhofer, Ulrich & Rennings, Klaus & Sahin, Bedia, 2006. "The impacts of the European Emissions Trading Scheme on competitiveness and employment in Europe: A literature review," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 111466.
    3. A. Heusinger & C. Kanzow, 2009. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 159-183, October.
    4. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    5. Stefanescu, Anton & Ferrara, Massimiliano, 2006. "Implementation of voting operators," Journal of Mathematical Economics, Elsevier, vol. 42(3), pages 315-324, June.
    6. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    7. Ferris, Michael C. & Munson, Todd S., 2000. "Complementarity problems in GAMS and the PATH solver," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 165-188, February.
    8. Massimiliano Ferrara, 2006. "A cooperative study of one-commodity market games," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 53(2), pages 183-192, June.
    9. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    10. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xuehong & Zuo, Xuguang & Li, Hailing, 2021. "The dual effects of heterogeneous environmental regulation on the technological innovation of Chinese steel enterprises—Based on a high-dimensional fixed effects model," Ecological Economics, Elsevier, vol. 188(C).
    2. Allevi, E. & Conejo, A.J. & Oggioni, G. & Riccardi, R. & Ruiz, C., 2018. "Evaluating the strategic behavior of cement producers: An equilibrium problem with equilibrium constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 717-731.
    3. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    4. Nie, Pu-Yan & Wang, Chan & Yang, Yon-Cong, 2017. "Comparison of energy efficiency subsidies under market power," Energy Policy, Elsevier, vol. 110(C), pages 144-149.
    5. Hongtao Ren & Wenji Zhou & Marek Makowski & Shaohui Zhang & Yadong Yu & Tieju Ma, 2023. "A multi-criteria decision support model for adopting energy efficiency technologies in the iron and steel industry," Annals of Operations Research, Springer, vol. 325(2), pages 1111-1132, June.
    6. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    7. E. Allevi & A. Gnudi & I. V. Konnov & G. Oggioni, 2018. "Decomposition method for oligopolistic competitive models with common environmental regulation," Annals of Operations Research, Springer, vol. 268(1), pages 441-467, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Passacantando & Danilo Ardagna & Anna Savi, 2016. "Service Provisioning Problem in Cloud and Multi-Cloud Systems," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 265-277, May.
    2. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    3. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    4. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    5. Axel Dreves, 2014. "Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 139-159, October.
    6. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    7. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    8. Axel Dreves & Christian Kanzow & Oliver Stein, 2012. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 53(4), pages 587-614, August.
    9. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    10. Liu, Ping & Fu, Zao & Cao, Jinde & Wei, Yun & Guo, Jianhua & Huang, Wei, 2020. "A decentralized strategy for generalized Nash equilibrium with linear coupling constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 221-232.
    11. Axel Dreves & Joachim Gwinner, 2016. "Jointly Convex Generalized Nash Equilibria and Elliptic Multiobjective Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 1065-1086, March.
    12. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    13. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    14. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.
    15. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    16. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    17. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    18. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    19. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    20. Franziska Holz, Christian von Hirschhausen and Claudia Kemfert, 2009. "Perspectives of the European Natural Gas Markets Until 2025," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 137-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:3:p:1017-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.