IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v59y2014i1p63-84.html
   My bibliography  Save this article

A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application

Author

Listed:
  • Axel Dreves
  • Francisco Facchinei
  • Andreas Fischer
  • Markus Herrich

Abstract

We present a new algorithm for the solution of Generalized Nash Equilibrium Problems. This hybrid method combines the robustness of a potential reduction algorithm and the local quadratic convergence rate of the LP-Newton method. We base our local convergence theory on a local error bound and provide a new sufficient condition for it to hold that is weaker than known ones. In particular, this condition implies neither local uniqueness of a solution nor strict complementarity. We also report promising numerical results. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
  • Handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:63-84
    DOI: 10.1007/s10589-013-9586-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9586-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9586-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axel Dreves & Christian Kanzow & Oliver Stein, 2012. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 53(4), pages 587-614, August.
    2. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    3. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    4. Jong-Shi Pang & Masao Fukushima, 2009. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 6(3), pages 373-375, August.
    5. K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
    6. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    7. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    8. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    2. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    3. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    4. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.
    5. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    6. Vu, Duc Thach Son & Ben Gharbia, Ibtihel & Haddou, Mounir & Tran, Quang Huy, 2021. "A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1243-1274.
    7. Andreas Fischer & Markus Herrich & Alexey Izmailov & Mikhail Solodov, 2016. "Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions," Computational Optimization and Applications, Springer, vol. 63(2), pages 425-459, March.
    8. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    9. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    10. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    2. Axel Dreves, 2014. "Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 139-159, October.
    3. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    4. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    5. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    6. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    7. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    8. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    9. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    10. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    11. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    12. Shipra Singh & Aviv Gibali & Simeon Reich, 2021. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications," Mathematics, MDPI, vol. 9(14), pages 1-23, July.
    13. Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
    14. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    15. Jean Strodiot & Thi Nguyen & Van Nguyen, 2013. "A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 56(2), pages 373-397, June.
    16. Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
    17. Christian Kanzow & Daniel Steck, 2018. "Augmented Lagrangian and exact penalty methods for quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 69(3), pages 801-824, April.
    18. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    19. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    20. Jiang, Zhoutong & Lei, Chao & Ouyang, Yanfeng, 2020. "Optimal investment and management of shared bikes in a competitive market," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 143-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:59:y:2014:i:1:p:63-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.