IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v190y2021icp1243-1274.html
   My bibliography  Save this article

A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems

Author

Listed:
  • Vu, Duc Thach Son
  • Ben Gharbia, Ibtihel
  • Haddou, Mounir
  • Tran, Quang Huy

Abstract

We present a new method to solve general systems of equations containing complementarity conditions, with a special focus on those arising in the thermodynamics of multicomponent multiphase mixtures at equilibrium. Indeed, the unified formulation introduced by Lauser et al. (2011) has recently emerged as a promising way to automatically handle the appearance and disappearance of phases in porous media compositional multiphase flows. From a mathematical viewpoint and after discretization in space and time, this leads to a system consisting of algebraic equations and nonlinear complementarity equations. Due to the nonsmoothness of the latter, semismooth and smoothing methods commonly used for solving such a system are often slow or may not converge at all. This observation led us to design a new strategy called NPIPM (NonParametric Interior-Point Method). Inspired from interior-point methods in optimization, the technique we propose has the advantage of avoiding any parameter management while enjoying theoretical global convergence. This is validated by extensive numerical tests, in which we compare NPIPM to the Newton-min method, the standard reference for almost all reservoir engineers and thermodynamicists.

Suggested Citation

  • Vu, Duc Thach Son & Ben Gharbia, Ibtihel & Haddou, Mounir & Tran, Quang Huy, 2021. "A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1243-1274.
  • Handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:1243-1274
    DOI: 10.1016/j.matcom.2021.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421002652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    2. A. Auslender & R. Cominetti & M. Haddou, 1997. "Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 43-62, February.
    3. Jean-Pierre Dussault & Mathieu Frappier & Jean Charles Gilbert, 2019. "A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 359-380, December.
    4. Mounir Haddou & Patrick Maheux, 2014. "Smoothing Methods for Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 711-729, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Fischer & M. Herrich & A. F. Izmailov & W. Scheck & M. V. Solodov, 2018. "A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points," Computational Optimization and Applications, Springer, vol. 69(2), pages 325-349, March.
    2. Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.
    3. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    4. L. Abdallah & M. Haddou & T. Migot, 2019. "A sub-additive DC approach to the complementarity problem," Computational Optimization and Applications, Springer, vol. 73(2), pages 509-534, June.
    5. Felipe Alvarez & Miguel Carrasco & Karine Pichard, 2005. "Convergence of a Hybrid Projection-Proximal Point Algorithm Coupled with Approximation Methods in Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 966-984, November.
    6. Angelia Nedić & Asuman Ozdaglar, 2008. "Separation of Nonconvex Sets with General Augmenting Functions," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 587-605, August.
    7. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
    8. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    9. Mounir Haddou & Patrick Maheux, 2014. "Smoothing Methods for Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 711-729, March.
    10. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    11. Axel Dreves, 2017. "Computing all solutions of linear generalized Nash equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 207-221, April.
    12. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.
    13. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    14. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    15. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    16. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
    17. Héctor Ramírez & David Sossa, 2017. "On the Central Paths in Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 649-668, February.
    18. Felipe Alvarez & Miguel Carrasco & Thierry Champion, 2012. "Dual Convergence for Penalty Algorithms in Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 388-407, May.
    19. Liwei Zhang & Jian Gu & Xiantao Xiao, 2011. "A class of nonlinear Lagrangians for nonconvex second order cone programming," Computational Optimization and Applications, Springer, vol. 49(1), pages 61-99, May.
    20. Marcos Singer & Patricio Donoso & José Noguer, 2005. "Optimal Planning of a Multi-Station System with Sojourn Time Constraints," Annals of Operations Research, Springer, vol. 138(1), pages 203-222, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:1243-1274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.